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ABSTRACT 
 
     In this study, we present the convergence behavior of the MITC3+ triangular shell 
element, which has been recently developed (Lee et. al, 2014, Jeon et. al, 2015, Lee et. 
al, 2015). A cubic bubble function for the rotations is used to enrich the bending 
displacements and the corresponding degrees of freedom can be statically condensed 
out on the element level. The MITC (Mixed Interpolation of Tensorial Components) 
method is employed to alleviate shear locking. The MITC3+ shell element passes all 
the basic tests (the patch, zero energy mode and isotropy tests). In convergence 
studies, excellent convergence behaviors are shown. In uniform meshes, the 
convergence behavior of the MITC3+ shell element is as good as that of the 4-node 
MITC4 shell element, which has been widely used in finite element analysis of shells. In 
distorted meshes, the MITC3+ shell element shows much better convergence behavior 
than the MITC4 shell element, particularly, in bending-dominated shell problems. 
 
 
1. INTRODUCTION 
 

The finite element method has been dominantly applied to analyze shell structures. 
It is important to use reliable and effective shell finite elements. There is still required to 
improve predictive capability of shell elements (Bathe, 1996, Chapelle and Bathe, 
2011). One of important issues is to develop the effective 3-node triangular shell 
element, which is very useful for automatic mesh generations of complex shell 
structures (Lee and Bathe, 2004, Lee et. al, 2007, Lee et. al, 2012).  

Recently, a new 3-node triangular shell finite element (MITC3+) was developed 
(Lee et. al, 2014). A cubic bubble function is used for the interpolation of the rotations 
to enrich the bending displacement fields. The corresponding rotation degrees of 
freedom can be statically condensed out on the element level. A new assumed 
transverse shear strain field was established with a new tying scheme to reduce shear 
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locking while satisfying the consistency and ellipticity conditions. The MITC3+ shell 
element passes the three basic tests (the patch, zero energy mode and isotropy tests) 
and shows excellent convergence behaviors in various shell problems even when 
highly distorted meshes are used (Lee et. al, 2014).  

In this presentation, we show the convergence behavior of the MITC3+ triangular 
shell element. The results are compared with the 4-node MITC shell element (MITC4), 
which has been widely used in various commercial software.  

In the following sections, we review the formulation of the MITC3+ triangular shell 
finite element and its performance is briefly presented. We then present conclusions. 
 
 
2. The MITC3+ triangular shell finite element 
 

The geometry interpolation of the MITC3+ shell element, shown in Fig. 1, is given 
by (Lee et. al, 2014) 
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Fig. 1. Geometry of the MITC3+ shell element with an additional bubble node. 
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in which ),( srhi  is the two-dimensional interpolation function of the standard 

isoparametric procedure corresponding to node i , ix


 is the position vector of node i  



  

in the global Cartesian coordinate system, and ia  and i
nV


 denote the shell thickness 

and the director vector at the node, ),( srf i  are two-dimensional interpolation functions 

that include the cubic bubble function 4f  corresponding to the internal node 4 
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From Eq. (1), we obtain the displacement interpolation 
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in which iu


 is the nodal displacement vector in the global Cartesian coordinate system, 

iV1


 and iV2


 are unit vectors orthogonal to i

nV


 and to each other, and i  and i  are 

the rotations of the director vector i
nV


 about iV1


 and iV2


, respectively, at node i  ( 4  

and 4  are the rotation degrees of freedom at the bubble node). 
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Fig. 2. Tying positions (A)-(F) used for the assumed transverse shear strain field of the 
MITC3+ shell finite element. 

 
 

The geometry of the MITC3+ shell element is flat because the bubble node with 
only rotation degrees of freedom is positioned on the flat surface defined by the three 
corner nodes of the element. Hence, only the transverse shear strain components are 
assumed using the MITC method. The assumed transverse shear strain field is given 
by (Lee et. al, 2014) 
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in which )()()()(ˆ E
st

F
st

D
rt

F
rt eeeec   and the 6 tying points (A)-(F) with the tying distance 

d  are shown in Fig. 2. A fixed value 000,10/1d  is used in Ref. (Lee et. al, 2014). 
The partly clamped hyperbolic paraboloid shell problem shown in Fig. 3 is 

considered (Lee and Bathe, 2002). The surface is defined as 
 

22 YXZ  ; 2)]2/;2/[),( LLYX  ,                     (5) 
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Fig. 3 Partly clamped hyperbolic paraboloid shell problem ( 0.1L , 11102E  and 
3.0 ). 
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Fig. 4 Distorted mesh pattern for 8N . 
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Fig. 5 Convergence curves for the partly clamped hyperbolic paraboloid shell problem. 
The bold line represents the optimal convergence rate. (a) Uniform mesh. (b) Distorted 

mesh. 
 
 
 
and clamped along the side 2/LX   and loaded by its self-weight. This shell 
problem is classified as a bending dominated behavior. Due to symmetry, only one half 
model is considered. Both the uniform mesh shown in Fig. 3 and the distorted mesh 
shown in Fig. 4 are considered. The s-norm is used for the convergence studies (Hiller 
and Bathe, 2003). Fig. 5 presents the convergence curves of the MITC3+ and MITC4 
shell elements. Even though the distorted mesh is used, the MITC3+ shell element still 
shows good results unlike the MITC4 shell element.  
 
 
3. CONCLUSIONS 
 

We presented the performance of the MITC3+ triangular shell element recently 
developed in convergence studies. The results are compared with the MITC4 
quadrilateral shell element, which has been widely used in finite element analysis of 
shells. The MITC3+ shell element showed the excellent behavior even when distorted 
meshes are used. In uniform meshes, the performance of the MITC3+ shell element is 
as good as that of the 4-node MITC4 shell element. In distorted meshes, the MITC3+ 
shell element presented much better performance than the MITC4 shell element in the 
bending-dominated shell problems. We expect that, due to its superior performance, 
the MITC3+ triangular shell element will be widely used in finite element analysis of 
shells.  
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