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ABSTRACT 
 

     Hysteresis is a phenomenon that characterizes the structural behavior of typical 
reinforced concrete (RC) structures that undergo load reversals beyond their elastic 
limits. For an RC structure constructed in an earthquake-prone zone, seismic actions 
are routinely considered as one of the most commonly encountered situations that may 
lead to hysteresis. This paper is concerned with the seismic structural safety in relation 
to a hysteretic RC system. Specifically, the fragility of the RC system at a given level of 
seismic intensity is quantified. The seismic fragility quantification of this kind is often 
accompanied by two issues, i.e., incomplete structural appraisal data and prolonged 
computing time. The former is addressed by using a contemporary statistical technique 
referred to as the expectation-maximization algorithm, while a surrogate model is rolled 
out to help resolve the latter. A salient feature of the study presented herein is that the 
hysteretic system being investigated is presumed to have been in service for a 
considerable period of time so that its up-to-date, degraded health condition needs to 
be allowed for. 
 
1. INTRODUCTION 
 
     Hysteresis is a kind of nonlinear behavior that can often be observed when building 
materials are loaded beyond their elastic limits. It is particularly prevalent in situations 
where reinforced concrete (RC) structures are subjected to inelastic load reversals, 
such as seismic actions, and thus appropriately capturing it has become one of the key 
performance indicators for relevant analytical or numerical modeling techniques. In this 
regard, Mostaghel and Byrd (2000) proposed an analytical description of multi-degree-
of-freedom dynamic systems with the corresponding hysteretic behavior allowed for. 
Compared with many other competing analytical or numerical models, the model by 
Mostaghel and Byrd (2000) stands out thanks to its relative convenience in terms of the 
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Fig. 1 A synthetic seismic horizontal ground acceleration record (the upper subfigure) 
and the resulting horizontal displacement response of the two-story hysteretic RC 

frame (the lower subfigure) 
 
calibration of the parameters involved and therefore constitutes a promising tool for 
response characterization of hysteretic RC systems. 
     In the backdrop of quantification of safety performance of in-service RC systems 
against seismic actions, this paper reports on a pilot study that in the methodological 
sense lays some groundwork in the following two respects: efficiency for displacement 
response simulation and robustness against appraisal data missingness. 
 
2. PARAMETER SETUP FOR THE HYSTERETIC RC SYSTEM INVOLVED IN THE 
PILOT STUDY 
 
     A two-story RC shear frame modeled through a two-degree-of-freedom hysteretic 
system as per Mostaghel and Byrd (2000) is engaged in this pilot study. It is assumed 
that within the elastic range each story has a normally distributed story stiffness with a 
mean of 4×104 kN/m and a coefficient of variation of 0.2. It is further assumed that 
these two story stiffnesses as a whole follow a bivariate normal distribution with a 
correlation coefficient of 0.5. A post-yield-to-pre-yield stiffness ratio of 0.15 is 
introduced to help describe the stiffness reduction associated with the inelasticity. The 
mass of the first story is taken as a deterministic quantity of 320 t, whereas 300 t is 
used for the mass of the second story. A Rayleigh damping mechanism is featured in 
such a way that the modal damping ratios for the pertinent first and second modes are
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Fig. 2 Regression analysis in relation to the training, testing, and validating of the 
surrogate model 

 
 
0.03 and 0.05, respectively. The seismic-horizontal-ground-acceleration time history 
used in the study is shown in Fig. 1, which is synthesized based on Clough and 
Penzien (1993), Soong and Grigoriu (1993), and Kafali and Grigoriu (2007) and has 
been scaled to have a peak ground acceleration of 2.943 m/s2 (i.e., 0.3g where g is the 
gravitational acceleration). Examples of the resulting horizontal-displacement time 
histories at the first and roof levels of the RC frame are also plotted as in Fig. 1. The 
time integration scheme used herein is the fourth-order Runge-Kutta method.



 
 

Fig. 3 Regression analysis of the surrogate model output on the output derived from the 
fourth-order Runge-Kutta method (i.e., the time marching method) 

 
 
Throughout the fragility analysis performed in this study, the failure of the RC frame is 
defined as the case that the maximum interstory relative horizontal displacement 
exceeds 0.15 m, which corresponds to a story drift ratio of 0.03 for a story height of 5 m. 
It should be emphasized that the limit state with respect to the story drift ratio of an RC 
frame is highly design-specific (Megally and Ghali 2002; American Concrete Institute 
(ACI) Committee 318 2014). 
 
3. SURROGATE MODEL AND EXPEDIENT REMEDY 
 
     The process of solving the equation of motion of a dynamic system to obtain its 
displacement, velocity, and acceleration time histories is widely referred to as time 
integration. On many occasions, time integration is nothing more than invoking an 
established routine as there exist many canonical time marching methods ranging from 
straightforward first-order single-point methods (e.g., the explicit Euler method) to more 
advanced higher-order multi-point methods (e.g., the fourth-order Adams-Bashforth-
Moulton method). As for fragility analysis, however, things can sometimes go awry: 
Rather than being implemented only a few times, time integration often needs to be 
performed hundreds or even thousands of times in a fragility analysis. As such, the 
time spent on time integration, which in many other circumstances would be negligible, 
can really become an encumbrance in a fragility analysis. To address this issue, an 
attempt was made in this study to construct a surrogate model for a routine time
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Fig. 4 Comparison between the time-marching and surrogate-model results 
 
Table 1. An example of a set of the incomplete structural appraisal data for the in-
service hysteretic RC system 

Realizations of the elastic story stiffness random vector (×104 kN/m) 

(3.6009, 3.1777); (3.5557, NA); (2.7020, 2.3300); (4.6302, NA); (4.5615, 3.8353); 
(4.3586, 4.1648); (3.3968, 4.3763); (4.4363, 4.6591); (4.2095, 3.8407); (4.9156, 
3.2391); (4.1181, 4.8221); (NA, 2.1381); (NA, 4.3149); (3.8054, 3.6278); (3.8863, 
3.9124); (3.5433, NA); (5.4288, 4.7475); (4.9363, 4.2828); (3.2399, 2.4820); (4.8827, 
NA); (3.7721, NA); (NA, 2.9665); (3.5605, 3.1908); (4.0205, 3.2878); (3.8838, 5.0706); 
(NA, NA); (NA, 3.4680); (4.0679, 3.8854); (2.7605, NA); (4.2077, NA). 

 
 
marching method with the application to the hysteretic RC frame defined in Section 2. 
     Specifically, with the proven success of the artificial neural network technique in 
constructing surrogate models for some other engineering applications (e.g., Sreekanth 
and Datta 2010; Wang et al. 2015), a feedforward backpropagation artificial neural 
network was created, trained, and validated in the present study by using the Neural 
Network Toolbox in the commercial software package MATLAB (MathWorks 2013). 
The network is equipped with two layers with the hidden layer having 20 neurons. The 
input variables of the network are the realizations of the normally distributed elastic 
story stiffness random vector, while the maximum interstory relative horizontal 
displacement of the hysteretic RC frame is the output variable. The training database of 
the network comprises 2,000 input-output pairs, which were generated by the fourth-
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Fig. 5 Comparison of the estimates of the means in the incomplete-data scenario with 
those in the complete-data scenario 

 
Table 2. Samples obtained in the complete- and incomplete-data scenarios for the 
seismic fragility of the hysteretic RC system 

Case Sample 

Complete-data scenario 
0.0256; 0.0228; 0.0450; 0.0460; 0.0072; 0.0316; 
0.0132; 0.0574; 0.0158; 0.0076; 0.0372; 0.0356. 

Incomplete-data scenario 
0.0290; 0.0132; 0.0358; 0.0598; 0.0478; 0.0474; 
0.0554; 0.0290; 0.0258; 0.0398; 0.0234; 0.0758. 

 
 
order Runge-Kutta method. The resulting network was validated through the MATLAB 
toolbox in the first instance, as in Fig. 2. The high coefficients of determination implied 
by the figure demonstrate the efficacy of the trained network. For the purpose of further 
validation, corresponding to additional 100 realization units of the elastic story stiffness 
random vector, two sets of 100 output data points were derived from the fourth-order 
Runge-Kutta method and the trained network, respectively. These two sets of data are 
then compared in Figs. 3 and 4. Note that the shaded belt in Fig. 4 marks the zones 
such that if a data point obtained from the trained network (as indicated by a black solid 
dot in the figure) falls into them, the relative error of this data point with respect to that 
yielded by the time marching method is less than 5%. As one can see, Figs. 3 and 4
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Fig. 6 Comparison of the estimates of the variances and covariance in the incomplete-
data scenario with those in the complete-data scenario 

 
 
appear to further confirm the efficacy of the trained network. 
     Another issue that should be considered when dealing with in-service civil structures 
is the possible incompleteness of relevant structural appraisal data (Wang et al. 2015). 
As an example, Table 1 lists a set of incomplete structural appraisal data simulated for 
the hysteretic RC frame being investigated, where a missing data point is denoted by 
an “NA”. Instead of chasing up the missing data points, which may not always be viable 
in reality, this study resorts to the expectation-maximization algorithm (McLachlan and 
Krishnan 2008; R Core Team 2015; Novo and Schafer 2013) for a remedy. Although 
the remedy seems to be an expedient only, it does in many cases provide an effective 
way to handle various missing data situations. This is illustrated by Figs. 5 and 6 
through estimating the population distribution parameters pertaining to the elastic story 
stiffness random vector and by Table 2 in terms of the seismic fragility computation for 
the hysteretic RC frame. In fact, the two samples shown in Table 2, which were 
respectively obtained in a complete-data scenario and an incomplete-data scenario 
with a data missingness probability of 0.3, can be deemed not significantly different 
from each other based on the result given by a two-sample Kolmogorov-Smirnov test at 
the commonly used significance level of 0.05. 
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4. CONCLUDING REMARKS 
 
     The pilot study presented in this paper explores the feasibility of utilizing 
appropriately trained artificial neural networks to form a surrogate model to compute 
the nonlinear response of a representative hysteretic RC frame under seismic actions. 
The surrogate model thus constructed can be easily deployed to statistical simulation 
based seismic fragility analysis, so that the computation time needed for the analysis 
can be shortened phenomenally. The study also investigates the possibility of 
introducing a mechanism whereby the risk of having access to only incomplete 
structural appraisal data can be mitigated to some extent when evaluating the seismic 
fragility of an existing RC structural system. 
     With the groundwork laid by the pilot study, the ongoing and future research work 
includes enriching the framework presented here with additional seismic intensity 
measures and further calibrating the parameters involved in the hysteretic RC system. 
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