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ABSTRACT 

 

     Modern hardware tools enable computations with rather large FE models that can 
easily contain up to several million degrees of freedom. Despite of that, the demands of 
structural dynamics call for high efficiency, particularly in the field of Multi-Body System 

(MBS) dynamics or real-time interactive simulations in the field of virtual reality. Model 
reduction represents the typical way of handling the problem. Solutions based on the 

modal space are quite often used. The great numerical efficiency achievable in this 
manner is however accompanied by the drawback that the solutions are limited to 
linear deformations. This paper aims at extensions of existing modal-space based 

solutions into moderate geometrically nonlinear domain. The extensions considered are 
based on stress stiffening effect and local sub-structural rotations. They keep the high 

numerical efficiency of the modal superposition technique. A few cases are provided to 
exemplify the application of the proposed methods. 
 

 
1. INTRODUCTION 

 
     Consideration of structural deformations is a necessity in many fields of 
engineering. Accuracy is a typical requirement from a conducted structural analysis. 

However, modern design solutions call for an increased number of both experimental 
and numerical tests in order to provide adequate structural safety, robustness and 

reliability. With this requirement, the numerical efficiency of models gains in importance.  
     The Finite Element Method (FEM) has established itself as the method of choice 
for the computations in the field of structural analysis. It offers high accuracy, but is also 

numerically rather demanding. The computational power of modern hardware tools 
allows for numerically more expensive models containing even millions of degrees of 

freedom (DOFs). But computations with such models may take hours and even days,  
particularly if nonlinear and dynamical structural behavior is considered. Furthermore, 
there are fields of applications, such as virtual reality (VR) simulators, or Multi-Body 
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System (MBS) dynamics), in which numerical efficiency is of similar and maybe even 

greater importance (for instance, in VR applications) than the accuracy. In those cases, 
model reduction represents the typical way of handling the problem. It should be noted 

that simulations in those fields involve structures that perform large motion and 
therewith large rotation. Obviously, savings can be made by neglecting deformation 
and thus reducing the problem to only 6 DOFs of rigid-body motion per object. Even 

such a dramatic reduction poses some complexity resulting from nonlinearity in 
equations of motion and constraints used to define connections between the bodies. 

Therefore, attempts to improve the solution strategies were also considered even for 
MBS systems involving rigid-bodies only. For instance, Xiang et al. (2015) introduced 
independent displacement modes based on Moore-Penrose generalized inverse matrix 

for dynamic analysis of deployable structures. However, consideration of deformable 
behavior makes the problem significantly more complex (Zehn 2005). 

     Proper and robust model reduction techniques for deformable models represent a 
challenging task. Typical solution in the FEM and MBS is modal reduction, with di fferent 
approaches for choosing the adequate mode shapes. The main drawback of those 

approaches, regardless of the chosen mode shapes, is their linear character, i.e. the 
intrinsic applicability to linear analysis, whereby many cases of applications demand  

consideration of nonlinear structural behavior for acceptable accuracy. Hence, some 
rather simple techniques are proposed here as a possible remedy for the issue.  
 

 
2. MODAL SUPERPOSITION TECHNIQUE 

 

     Modal superposition technique implies that the deformational structural behavior 
is represented in terms of modal degrees of freedom. A carefully chosen set of mode 

shapes yields the degrees of freedom, so that the nodal displacements of the FEM 
assemblage, d, are approximated as a linear combination of the mode shapes θi: 
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where mi are the modal coefficients and Nm is the number of selected mode shapes. In 
the framework of the approach, the structural linear stiffness and mass matrices, KL 

and M, are reduced in the following manner:  
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with Θ=[θ1 θ2…] denoting the matrix of mode shapes. The dynamic equation now 
reads: 
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where Cm is the matrix of modal damping coefficients, Fm are the external forces 



  

transformed to modal space and m is the vector of modal coefficients.  

     In this manner a substantial reduction of the model size can be achieved. The art 
of performing model reduction based on this technique comes down to the proper 

choice of mode shapes. Typical approach used in FEM is to use the so-called normal 
modes (Bathe 1996), which determine the patterns of vibration of a system at specific 
frequencies (eigenfrequencies). On the other hand, in order to provide higher flexibility 

in the choice of boundary conditions, in MBS the Craig-Bampton (1968) modes are 
typically used. They represent a mixture of normal (vibration) modes and static modes. 

     Regardless of the choice of mode shapes, they characterize the structure in its 
initial (undeformed) configuration. Therefore, the modal superposition technique is 
intrinsically a linear method and applicable to small deformations. In what follows, we 

aim at extensions of the technique in order to cover moderate geometrically nonlinear 
effects.  

 
 
3. EXTENSION INTO THE GEOMETRICALLY NONLINEAR DOMAIN 

 
     Over the course of deformation, the configuration (geometry) and the stress state 

of the structure change continuously. Both effects have their influence on the global 
tangent stiffness matrix. The change in geometry is reflected in the change of the linear 
stiffness matrix, whereas the stress state influences the geometric stiffness matrix. Now, 

we shall consider ideas how to include this influences in the model reduced based on 
the modal superposition approach.  
 

     3.1 Geometric stiffness 
     The commercial MBS software package SIMPACK already offers an option to 

include the geometric stiffness matrix in a model of a deformable body based on modal 
superposition. However, it is limited to certain types of elements (e.g. beams) and it is 
force scaled, i.e. the geometric stiffness matrix is a linear function of the force and, 

hence, it is applicable for forces whose effect onto the structure is of quasi-static nature. 
What we propose is a relatively simple, but more general approach in which the stress 

state in a deformable part is assumed to be directly proportional to the deformation. 
One may notice that this is actually the assumption of linear analysis. With this 
assumption, one may determine the stress sta te and, therewith, the geometric stiffness 

matrix, KGi, for a mode shape and a certain value of the modal coefficient, say for the 
value of 1. During a simulation, for an arbitrary value of the modal coefficient, the 

current geometric stiffness matrix is simply scaled. The overall geometric stiffness 
matrix is obtained by superposing the scaled geometric stiffness matrices for single 
mode shapes:  
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The resulting tangent stiffness matrix is given by the sum of the linear and geometric 

stiffness matrix. The computational effort during the simulation remains rather small as 
the modal KGi matrices are computed in a pre-step and this is where the actual difficulty 



  

resides. As a matter of fact, certain FEM software packages provide the option for 

direct extraction of the geometric stiffness matrix, whereas in some other FEM 
programs inventive approaches are needed. For instance, the possibility of extracting 

the tangent stiffness matrix can be used to resolve the problem. One may do this for a 
configuration obtained by deforming the initial one. Additionally, the stiffness matrix 
may be extracted for the configuration that has the same shape as the deformed one, 

but is considered to be the initial one (hence, stress free). Subtracting the latter from 
the formed stiffness matrix yields the geometric stiffness matrix. 

     A simple example of academic nature illustrates the method. A steel plate 
(Young‟s modulus of 2.1 1011 Pa and the Poisson coefficient of 0.3), with the in-plane 

dimensions of 1 m and 0.8 m, and 0.008 m thick, is clamped at all four corners and 
exposed to a transverse force of 7.5 kN acting at its centroid, Fig. 1. Such a force gives 
rise to plate deformation that requires consideration of geometrically nonlinear effects 

for proper simulation accuracy. The results of linear and geometrically nonlinear 
computations performed in Abaqus with the structure discretized using 80 quadratic 

shell elements serve as reference solutions. The linear result in modal space is almost 
congruent with the linear result of the full FE model and is therefore not depicted in 
diagram in Fig. 1. The linear result is shown in the diagram in order to emphasize the 

need for consideration of geometrically nonlinear effects. It is easily recognized that, in 
this specific case, the addition of the geometric stiffness matrix successfully extends 

the applicability of the solution in modal space into the nonlinear domain. At the same 
time, the numerical effort is kept at a very low level. 
 

 
 

Fig. 1 Plate exposed to transverse force and diagram for the centroid transverse 

deflection according to different models 
  
      

     3.2 Displacement rotations 
     In many cases of structural deformation, parts of the structure exhibit large local 

rotations. The influence of this aspect onto the structural stiffness is captured by the 
change in the linear stiffness matrix of the FE assemblage. Stress stiffening could also 



  

play an additional role in such a behavior, but it cannot handle rotations. Hence, a 

different approach would be needed to account for local rotations.  
     Generally speaking, this effect demands to consider structural rotations locally. 

Surely, the effect is covered in geometrically nonlinear formulations with full (i.e. not 
reduced) FE models. However, in certain cases, substructures can be selected so that 
a single „average‟ rotation can acceptably describe the rotation of a whole substructure. 

This depends on the structural form and the complexity of induced deformation. Beam-
like structures or substructures belong to convenient candidates for this approach. The 

idea is to first compute the displacements using the conventional modal superposition 
technique. Then the average rotation of a conveniently chosen substructure is 
determined and, finally, the computed displacements are rotated by the same average 

rotation of the substructure. 
     A car rear axle is a good candidate to apply the method. In deformation, its crank 

arms may perform a rotation exceeding 10°. Therefore, the crank arms are chosen as 
substructures to apply the displacement rotation upon. The objective is to keep the high 
numerical efficiency provided by the modal superposition technique, but to improve at 

the same time the accuracy of predicting the geometry of the axle‟s deformed state. 
Hence, two geometric quantities are observed during the deformation – the suspension 

displacement and the toe-in angle. They are very important for an accurate prediction 
of the car trajectory in a curve. For a chosen load case, the two quantities are depicted 
versus each other in Fig. 2. Again, as reference solutions, linear and geometrically 

nonlinear solutions obtained in Abaqus using the full FE model are used. The solution 
in modal space with displacement rotation is obtained using only 10 normal modes 
providing thus a great reduction of numerical effort. And the improvement in the 

correlation between the two above mentioned geometric quantities is obvious from Fig. 
2.  

 
 

   
Fig. 2 Car axle – results obtained using full and reduced FE models 

 



  

4. CONCLUSIONS 

 
     The efficiency of numerical simulation gains in importance each day. Therefore, 

various model reduction techniques are developed to offer a well-balanced compromise 
between the efficiency and simulation accuracy. The developed techniques are mostly 
limited to linear analysis. This paper addressed two relatively simple ideas to extend 

the applicability of model reduction based on modal superposition techniques into the 
realm of moderate geometric nonlinearities. How successful the techniques can be 

depends on the character of deformation, as they aim as specific causes of geometric 
nonlinearities. The considered examples obviously illustrate a successful application, 
but a thorough analysis of the structural deformational behavior would be worthwhile 

prior to model preparation in order to assess whether one of the considered techniques, 
or maybe even their combination, would be the adequate choice.  
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