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ABSTRACT 
 
     Contact problem on indentation of an electro-elastic piezoelectric functionally 
graded (FG) half-space by a rigid spherical punch is considered. The half-space 
consists of a FG layer (coating) with arbitrary variation of electromechanical properties 
in depth and a homogeneous semi-infinite substrate. The punch is assumed to be an 
ideal electric conductor. Normal centrally applied force and constant electric charge are 
applied to the punch, leading to electro-elastic deformation of the half-space. The 
problem was described mathematically in terms of the linear theory of electro-elasticity 
and reduced to the solution of a system of integral equations. The bilateral asymptotic 
method was used to construct approximated solution of that system. Analytical 
expressions for contact stresses, electric induction, indentation force and electric 
charge coatings are provided. The results obtained are asymptotically exact both for 
thin and thick coatings and of high accuracy for intermediate thickness of the coating. 
  
 
1. INTRODUCTION 
 
     Many researchers have carried out investigations for the contact interaction of 
elastic solids with homogeneous or FG coatings, see Alinia et al. (2016), Lu et al. (2008) 
for example. Su et al. (2016), Ma et al. (2014) and Liu et al. (2012) consider contact of 
a rigid punch and electroelastic, magnetoelectroelastic or thermoelastic half-plane (or 
half-space) with FG coatings. They use a model of piecewise constant or exponential 
variation of properties in the coating. The problems were reduced to singular integral 
equations which were solved numerically by the collocation method. This method 
efficiently works for intermediate thickness of the coating but does not allow to obtain a 
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solution effective for thin coatings that are most important for applications.  
     The present paper addresses the axisymmetric contact of the rigid spherical 
punch and an electroelastic half-space with FG coating. In contrary to the 
abovementioned results, an arbitrary variation of the properties in the coating is 
considered. The solution of the problem is provided in the analytical form that is 
asymptotically exact for thin and thick coatings and of high accuracy for the 
intermediate thickness of the coating. 
 
2. MATHEMATICAL FORMULATION OF THE PROBLEM 
 
     Let us consider electroelastic half-space consisting of a FG piezoelectric layer 
(coating) of thickness H, and a homogeneous piezoelectric half-space (substrate). The 
axis of symmetry coincides with the direction of pre-polarization field. Cylindrical 
coordinate system r, φ, z is chosen with the z axis being the axis of symmetry of 
electromechanical properties. Linear constitutive equations for a piezoelectric material 
have the following form: 
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Elastic moduli с11, с12, с13, с33, с44, piezoelectric constants e31, e15, e33 and dielectric 
permeabilities ε11, ε33 of the half-space vary with depth as 
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constants. Hereafter, superscripts (c) and (s) correspond to the coating and to the 
substrate, respectively. The coating and the substrate are assumed to be glued without 
sliding: 
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     Let us consider a rigid spherical punch of radius R acting on the boundary of the 
half-space in the region z=0, x≤a (see Fig. 1). Outside this region the surface is free of 
stress and electrically insulated. The punch is assumed to be an ideal conductor. The 
punch is subjected to the normal centrally applied force P and constant electric charge 



  

Q. Friction between the punch and the half-space is neglected. Under the action of 
applied electromechanical loading the punch moves a distance δ downward the z-axis 
and an electrostatic field with potential ψ0 is formed. Therefore, the boundary conditions 
take the form:  
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The quantities of primary interest are the contact normal stresses and electric normal 
induction under the punch:  
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Fig. 1 Statement of the problem 
 
3. SOLUTION OF THE PROBLEM 
 
     Let us use the Hankel transformations:  
 

 ,)(J),}(,,,{),}(,,,{,)(J),(),(
0

0

0

1 


  drzqpwzrqpwdrzuzru  (6) 

 
and let us represent Hankel images of the displacements and electric potential in the 
following linear combination: 
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where constants Θkj characterize effective electromechanical properties on the surface 
of the coating, Lkj are the compliance functions to be determined from the solution of 
two-point boundary value problem for a system of ordinary differential equations with 
variable coefficients, see Vasiliev et al. (2016) for details. 
 
     Similar to Aizikovich and Aleksandrov (1982) the following asymptotic behavior of 
the compliance functions can be obtained: 
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where constants 
s

kj  characterize effective electromechanical properties of the 

substrate. Using Eq. (4), (6) and (7) the following system of dual integral equations can 
be obtained: 
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It should be pointed out that Θ51=Θ32, L51(γ,z)=L32(γ,z), Θ52<0, Θ32>0, Θ31>0, Lkj(γ,z)>0. 

 
     To solve the system of integral equations (9) with kernel transforms Lkj 
possessing properties (8) the bilateral asymptotic method, see Aizikovich (1990), can 
be used. It is based on an idea of approximation of the compliance functions by the 
ratio of fractional quadratic functions: 
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    Using approximation (10) an approximated analytical solution of the system (9) can 
be obtained similar to Volkov et al. (2017): 
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The dimensionless variables were used above (primes are omitted):  
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Constants Cj are the solution of the system of algebraic equations:  
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Constants ωj are the roots of the characteristic equation: 
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Following notations were used above: 
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     Indentation force and electric charge are obtained from the conditions of 

equilibrium of the punch 
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The unknown radius of the contact area satisfies the following equation: 
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4. CONCLUSIONS 
 
     Analytical form of the solution (11)-(20) is suitable for qualitative analysis of the 
main characteristics of the electroelastic contact such as contact stresses, electric 
induction, indentation force and electric charge. One can follow on dependence of 
these quantities on the basic parameters of the problem such as indentation depth δ, 
electric potential ψ0 and relative thickness of the coating λ.  
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