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ABSTRACT 
 

The overarching goal of structural optimization is to find a design solution that 
provides the best performance while satisfying given design constraints. One of the 
basic requirements of the structural system design is to withstand stochastic excitations 
such as seismic and wind loads. The consideration of such loadings directly affects 
building safety and increases the robustness of building performance. Thus, engineers 
consider the randomness of the excitement caused by natural disasters in the structure 
analysis and design process. Due to inherent uncertainties in stochastic loadings to 
structures, the performance of structural components and system should be assessed 
in a probabilistic manner. For the reliability assessment of a structure subjected to 
random excitations, the probability of the occurrence of at least one failure event over a 
time interval, i.e. the first-passage probability, often needs to be evaluated. In this study, 
a new method is proposed to integrate probabilistic constraints on the first-passage 
probability into the structural design and topology optimization. To evaluate the first 
passage probability effectively during the analysis and optimization, the failure event is 
described as a series system event consisting of failure events defined at discrete time 
points, and the system failure probability is obtained with the sequential compounding 
method. A new sensitivity analysis framework has been developed by integrating the 
sequential compounding method to facilitate the use of gradient-based optimizers for 
the proposed method. The proposed optimization framework is successfully applied to 
the conceptual design of lateral-load resisting systems and space trusses with a 
desirable level of reliability under earthquake ground motions.  
 

1. INTRODUCTION 

Reliable operation of the building system and its sustainability are significant of 
interest in academic research that directly impacts the industrial development as well 
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as the quality of daily living in the social community. It is also intimately linked to safety 
and survival of people in times of natural disaster where rapid response and recovery 
along with the reliability of building system and its sustainability play a critical role to 
reduce the socio-economic losses. Therefore, scientific approach and accountability 
behind optimizing building structures such as hazard mitigation, predictions of failure, 
and improvement of structural design processes need to be further developed. The 
consideration of stochastic excitations such as the wind and seismic loads in structural 
design directly affects building safety and increases the robustness of building 
performance. The performance of structural components and system should be 
assessed in a probabilistic manner due to inherent uncertainties in stochastic loadings 
to structures. The authors proposed a new method of topology optimization of 
structures under stochastic excitations (Chun et al. 2013, 2016). In the proposed 
approach, the failure probability at a given time point, i.e. the instantaneous probability 
is obtained efficiently by a structural reliability analysis employing a discrete 
representation method (Der Kiureghian 2000). Although this approach can handle an 
instantaneous failure probability effectively, it is noted that the performance or reliability 
of a structure under stochastic excitations often needs to be evaluated over a time 
interval rather than at a certain time point. Thus, a new system reliability based design 
and topology optimization method is proposed in this paper to handle constraints on the 
first-passage probability, i.e. the probability that at least one failure event occurs over a 
given time duration. 

 

2. RANDOM VIBRATION ANALYSIS USING DISCRETE REPRESENTATION 
METHOD 

2.1. DISCRETE REPRESENTATION OF STOCHASTIC PROCESS 
The discrete representation method (Der Kiureghian 2000) discretizes a 

continuous stochastic process with a finite number of standard normal random 
variables. A zero-mean Gaussian process f(t), for instance, can be discretized as 

 



n

i

ii ttsvtf
1

T)()()( vs  (1) 

where s(t) denotes a vector of deterministic basis functions, which is determined by the 
spectral characteristics of the process (Der Kiureghian 2000), and v is a vector of n 
uncorrelated standard normal random variables. 

2.2. RESPONSES OF LINEAR SYSTEM UNDER STOCHASTIC EXCITATIONS 
For a linear system subjected to a stochastic excitation, the displacement time 

history u(t) can be determined by substituting Eq. (1) to Duhamel’s integral, i.e. 
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where hs(t) is the unit impulse response function of the degree-of-freedom of interest, 
and a(t) denotes a vector determined by solving the convolution integral with s(t) and 
hs(t). The various failure events can then be described in the space of standard normal 
random variables v. For example, the instantaneous failure event, i.e. the event that the 
displacement at a certain time t = t0 exceeds a prescribed threshold u0, is represented 

by the linear half space u0u(t0) = u0a(t0)
Tv ≤ 0. From the geometric interpretation, a 

reliability index can be computed as a closed-form solution, i.e. 
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where 
0

ˆ( )tα denotes the negative normalized gradient vector of the limit-state function 

evaluated at the so-called design point v*. 

3. THE FIRST-PASSAGE PROBABILITY 

The first-passage probability, i.e. the probability that a stochastic response 
exceeds a given threshold at least once for a given duration, is often used to describe 
the reliability of a system subjected to stochastic excitations (VanMarcke 1975, 
Fujimura and Der Kiureghian 2007). One of the available approaches to obtain the first-
passage probability is defining the problem as a series system problem. i.e. 
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This approach requires evaluating the component failure probability at each discrete 
time point within an interval and performing a system reliability analysis using an 
efficient, reliable and robust algorithm that can account for statistical dependence 
between the component events. To handle a large number of component events 
required by the first-passage probability in Eq. (4), the sequential compounding method 
(SCM; Kang and Song 2010) is implemented in this research. 
 

4. OPTIMIZATION OF STRUCTURES UNDER FIRST-PASSAGE PROBABILITY 

One of the goals in structural optimization is to find the optimal solutions in a 
given design domain Ω subjected to tractions and displacement boundary conditions 
while satisfying given design constraints. A formulation of structural optimization under 
stochastic excitation with first-passage probability constraints can be formulated as 
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where d is a vector of design variables in a design domain Ω, n is the total number of 



 

 

time points during the interesting time interval. dlower and dupper are lower and upper 
bounds of design variables and M, C and K are the mass, damping and stiffness 

matrices of the design domain, respectively. ü , �̇�, u, and f are the acceleration, velocity, 
displacement and force vectors at time t, respectively. The reliability index β( )it of a 

constraint in Eq. (5) is evaluated at each discrete time point within time duration tn.  

5. SENSITIVITY ANALYSIS 

Sensitivity analysis with respect to various design parameters is essential in 
efficient gradient-based optimization algorithms. In this paper, a sensitivity formulation 
employing the adjoint method (Choi and Kim 2005) is proposed for linear systems 
subjected to stochastic excitations modeled by the discrete representation method. In 
general, the sensitivity of the system failure probability with respect to a parameter θ is 
obtained by a chain rule, i.e. 
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Recently, the authors (Chun et al. 2015) proposed a method to compute the derivatives 
of the system failure probability with respect to the reliability index by use of the SCM. 
The proposed method enables one to compute sensitivities of a parallel, a series, as 
well as a general system with respect to reliability indices efficiently. For probabilistic 
constraints associated with stresses under stochastic excitations aforementioned, the 
derivative of reliability index in which βi can be replaced by β(ti) with respect to the 
parameter de can be obtained as follows: 
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where Ee denotes Young’s modulus, Le represents the length of the element e, σo is the 
stress threshold value. To compute the sensitivities, the adjoint method is utilized in the 
paper. The basic idea of the adjoint method is introducing an adjoint system of 
equations so that computing implicitly defined terms e.g. ∂ak(tk,d)/∂de in sensitivity 
analysis can be avoided, resulting in reduced computational cost. Detailed discussions 
about the adjoint system of equations and computing procedure of the partial 
derivatives can be found in Chun et al. (2016). The final adjoint sensitivity equation 
yields the followings: 
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where λ denotes the adjoin vector, Ti is adjoint coefficients, and yT is directional cosine 
vector. For simplicity in the derivation, the following notations are introduced: 
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6. NUMERICAL APPLICATION 

 

Fig. 1 (a) Rendering of a bracing system (image courtesy of Skidmore, Owings & 
Merrill, LLP), (b) design geometry and loading conditions 
 

The proposed method is applied to identify optimal member sizes of the lateral 
bracing system (Fig. 1) subjected to a stochastic earthquake ground motion. The 



 

 

formulation in Eq. (5) is used, while the volume of a design domain is considered as an 
objective function. Three probabilistic constraints (Case I - compressive stress, Case II 
- maximum tip drift ratio, and Case III – inter-story drift ratios) associated with the first-
passage probability are considered in optimization. The stochastic seismic excitation f(t) 
is modeled as a filtered white-noise process using the Kanai-Tajimi filter model with the 
intensity Φo as below (Chun et al. 2016):  
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where f (=5π) and ζf=0.4 are filter parameters representing the predominant frequency 
and the bandwidth of the process, respectively while Φ0 represents the power spectral 
density of the underlying white noise process. The force vector in Eq. (5) is described 
as f = − MLf(t) where the vector L represents directional distribution of masses with 
unity. The lateral bracing system shown in Fig. 1 is modeled by truss elements. 
Young’s modulus E = 200 GPa and material density ρ = 7,800 kg/m3 are used as 
material properties of steel. The damping matrix is constructed using a Rayleigh 
damping model (Clough and Penzien 1993). Table 1 summarizes the parameter values 
used for three cases in optimization. 

 

Fig. 2 Optimal truss member sizes: (a) Case I (stress), (b) Case II (maximum tip drift 
fario), and (c) Case III (story drift ratios) 
 

 



 

 

The proposed method was able to identify the optimal member sizes (Fig. 2) of 
the lateral bracing system under probabilistic constraints on the first-passage 
probability. The larger member sizes along the vertical direction for Case II compared 
to Case III are observable. In Case II, the optimized areas maximize strengthening of 
the vertical members, whereas the Case III also increases the bracing members as well 
as the vertical members. It can be because the effects of vertical members to control 
story drift ratios are significant than X - bracings. Also, it should be noted that the 
different threshold value, characteristic parameters of the filter, target reliability index 
will also result in different optimal solutions. 

Fig. 3 shows the convergence histories of the objective function and the system 
failure probability for three cases. The proposed method achieves the system target 
failure probability effectively. The method quickly identifies an area in the design 
domain that satisfies the target system reliability, while most of the remaining design 
iterations identify the minimum volume in the area. Fig. 4 compares dynamic 
performance of the initial system and optimized system in terms of stress in member #4, 
a maximum drift ratio and a story drift-ratio. Improved dynamic behaviors, i.e. 
diminished magnitude of the response to the same input force, are observed in the 
optimized system. 

 

 

Fig. 3 Convergence histories: (a) volume, and (b) first-passage probability 
 

 



 

 

 

Fig. 4 Dynamic performance: (a) randomly generated excitations, and (b)-(d) 
corresponding dynamic responses (stress, maximum drift ratio, and inter-story drift 
ratio, respectively) by initial and optimized systems 
 

Table 1 Parameters used for design domain, probabilistic constraint and ground motion 
model 

Case Φo 
Initial 

member size 
Threshold tn , sec βt

sys
 Pt

sys 

I 0.2 0.25 m2 200 MPa 6.0 3.0 0.0013 

II 0.2 0.25 m2 1/550 6.0 3.0 0.0013 

III 0.2 0.25 m2 1/250 6.0 3.0 0.0013 

 

7. CONCLUSION 

In the paper, a new method is developed to incorporate the first-passage 
probability into structural optimization. Sensitivity calculation of the probabilistic 
constraint on the first-passage probability is derived to use efficient optimization 
algorithms. The developed method is successfully applied to the lateral bracing system 
of structures subjected to the stochastic ground motion to find optimal member sizes. 
Those can resist future realization of stochastic processes with a desired level of 
reliability. 
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