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ABSTRACT 
 

     This work presents a digital image processing approach with a unique hive 
triangle pattern by integrating GPU computing technique and sub-pixel analysis for 
measurement of structural dynamic response. Several images data were calculated in 
sequential and GPU parallel computing. NVIDA GTX-580 was implemented in the 
image analysis. Experimental results indicate that the speedup is more than 70 times 
with sequential computing. The result indicated the GPU parallel technique is a very 
suitable in the measurement of structural dynamic response for digital images. 
Importantly, the proposed approach for evaluating pattern center and size is highly 
promising for use in assigning the adaptive block for a digital image correlation method. 
 
1. INTRODUCTION 
 
     In general, the measurement device is wired device which is installed on 
structural and connected to data collection instrument. The initial stage included setting 
up and configuration is costly in labor, time, and financial terms (Ҫelebi 2002). After 
wireless technology is developed, the measurement work is easier. The measurement 
data was gained through radio waves, but packet loss and power usage is an issue to 
be overcome. Due to rapid advances in optical imaging hardware, the use of digital 
photography in structural-monitoring systems has attracted considerable interest 
among researchers. Adopting a non-contact method of image measurement can 
increase operational convenience and reduce installation costs. However, such a 
method requires additional calculation-processing power, especially in cases where 
real-time measurement is required. As such, the application of parallel computing to 
such systems might have considerable benefits. 
Digital-image analysis has been used in several disciplines over the last three decades. 
Digital image correlation (DIC), a method used broadly in experimental mechanics, is a 
highly accurate means of determining the translations and rotations of a rigid body in a 
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digital image. Peters and Ranson (1982) proposed a digital-image scheme to measure 
surface displacement in mechanical engineering. Laser-speckle metrology can be 
applied to determining the undeformed and deformed coordinates of a body. Amodio et 
al. (2003) investigated the feasibility of constructing a short-duration, real-time speckle 
correlation device that took into account the availability of competitively priced high-
resolution cameras and high-speed processors. Their method can be regarded as an 
extension to digital images of conventional white-light speckle photography, and their 
final algorithm can be applied to hundreds of pictures within an acceptable timeframe. 
Pan and Wang (2013) reported on the successful use of a camera and a transmission-
diffraction grating to measure the surface profiles and deformations of small objects. 
Digital imaging and inverse-analysis algorithms that have been developed to solve 
friction problems can also be extended to identify non-linear mechanical and structural 
characteristics. Shih et al. (2011, 2012) developed a version of the DIC method that 
can determine the surface smoothness of construction materials and to monitor the 
dynamic responses of buildings under excitation by an earthquake. 
Digital-image analysis involves an enormous amount of data. It is straightforward for 
images that capture the dynamic structural responses of a specimen building to be 
captured by an appropriate device. However, our previous research (Lu et al. 2014) 
indicated that effective analysis of such images is made considerably easier by their 
inclusion of a hive triangle pattern (HTP). When an earthquake shakes a building, the 
target pattern may move out of the image-capture area; so to ensure that the pattern 
remains within the image, this capture area may need to be extremely large. Indeed, 
the amount of data in the acquired image may be thousands of times greater than that 
obtained using wireless or wired measurement methods by sensor devices. The 
computation of the displacement of a specimen building based on digital images is also 
very time-consuming. Parallel computing is effective means of calculating the digital-
image correlation coefficients of numerous digital images. OpenMP is one such 
parallel-computing technique, and can be implemented using a multi-core CPU 
(Chandra et al. 2001). Another, called CUDA (originally an acronym for “Compute 
Unified Device Architecture”), was developed by NVIDIA and is implemented using a 
CUDA-enabled graphics processing unit (GPU) for general-purpose computing 
(Lindholm et al. 2008). For purposes of the present research, a CUDA-enabled GPU 
was used to calculate digital-image correlation coefficients for increasing system 
performance 
An acquired image is made up of image blocks. In the case of a source image (i.e., an 
acquired image that is undisturbed by an external load), a source-image block 
comprises an HTP with a significant contrast. An acquired image that is disturbed by an 
external load is referred to as a target image. The image blocks acquired at each time 
step contain large amounts of information, including meaningless background as well 
as relevant dynamic structural information. Many estimated blocks at a range of 
different coordinates in a target image can be chosen for calculating their coefficients of 
correlation to a basis block. The dynamic displacement of an object in the target image 
can be estimated by comparing an adaptive estimated block against a basis block, and 
calculating their cross-correlation using DIC. The size and location of an image block 
influence the accuracy of the DIC algorithm. Other factors that may impact on its 
precision include inherent image noise and the correctness of sub-pixel interpolation 



  

(Schreier et al. 2000). 
 
2. PROBLEM DEFINITION AND EXPERIMENTAL CONFIGURATION 
 
     The central concern of the present work is the problem of measuring digital-image 
displacement using a source image and a target image. The object or specific pattern in 
a source image may be somewhere in a target image. When the object is a rigid body, 
estimated displacement may include rotation of the body. However, the displacement of 
the y-axis in relation to the x-axis was tiny in our experiment. Therefore, the results can 
be regarded as revealing a linear translation of image pixels. The simplified form of the 
estimated displacement is 
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where I is the basis block in source image S; I' represents the estimated block in target 
image T; the subscripts indicate the coordinates that correspond to S and T; and CC 
stands for the function of the correlation coefficient between the basis block and the 
estimated block. The coordinates )0,0( yx  of a source image are predefined (as 

described below), and the coordinates )1,1( yx  of a target image are assigned 

according to a measurement system aimed at obtaining the maximal correlation 
coefficient. Figure 1 presents these parameters and actual images. The computation of 
this coefficient is time-consuming. Therefore, GPU-based parallel computing was 
utilized to solve the present research problem. 
 

 

Fig. 1 (a) Source and target images, showing variation in the displacement of an image 
block. (b) Source image. (c) Target image. 

 
The correlation coefficient denotes the degree of similarity between two image blocks. 
The maximal correlation coefficient, 1, would indicate an identical location of an object 



  

in both images. However, images captured at different times always differ from one 
another with different lighting environment, even if the object remains fixed in space. 
Our scheme for estimating the location of an object can still obtain the accuracy 
displacement between images based on their correlation coefficient. 
To select a source image block for use as the basis block is of great importance when a 
correlation coefficient is being used to estimate the displacement of an object. Location 
and size are two of the major properties of an image block, and the values of these 
properties that are appropriate for computing correlation coefficients are efficiently 
estimated using the proposed HTP-based evaluation method. Even if the displacement 
undergone by an object is very small, the correlation coefficient can still clearly reveal it, 
based on the difference between the source and target images. The feasibility of the 
proposed method is demonstrated by a numerical simulation of a photographic 
experiment in which the structure is at a short distance from the camera. In another 
experiment, a small three-story frame was mounted on a Quanser Shake Table II and a 
linear variable differential transformer (LVDT) was placed on its second floor (Fig. 2). 
The results of both these experiments have been previously published (Lu et al. 2014). 
 

 

Fig. 2 (a) Configuration of small three-story frame with an LVDT on its second floor; (b) 
an image frame captured using measurement system with low and (c) high resolution. 

 
3. GRAPHICS PROCESSING UNIT AND CUDA 
 
     Parallel computing executes multiple instructions concurrently, and its feature 
known as multi-threading can simultaneously execute multiple processes or threads in 
a multi-core CPU to accelerate scientific computing (Hung & Adeli 1992, 1994, Adeli & 



  

Hung 1993). The thread is the fundamental building block of a parallel program; most 
traditional programs are of a single-thread type because the primary hardware on which 
they are executed is a single-core CPU. 
OpenMP is an application-programming interface (API) that supports multi-platform, 
shared-memory multiprocessing programming in C, C++, and FORTRAN. It consists of 
a set of compiler directives, library routines, and environmental variables that affect run-
time behavior. A programmer can easily use OpenMP to develop multi-core CPU 
parallel programs. Advances in GPU technology have opened a new avenue for 
increasing computing power. GPU-based techniques can be hundreds of times faster 
than conventional sequential computation without sacrificing solution quality. CUDA is a 
parallel computing platform and API that was created by NVIDIA. It allows software 
developers to use a CUDA-enabled GPU for general-purpose processing – an 
approach known as GPGPU. The CUDA programming model is a variant of the single 
instruction multiple data (SIMD) model, also known as the single program multiple data 
model, which uses an instruction model called single instruction multiple threads (Cook 
2013). A flowchart of the CUDA programming model (Figure 3) includes the following 
four steps: copy host data to device, invoke kernel function, execute kernel function on 
GPU, and copy result from device to host. Digital image data must be copied to the 
GPU. The DIC method is coded into the kernel function, and executed on a GPU. The 
computational result from the GPU is copied to the CPU memory and written into an 
external file. 
 

 

Fig. 3 Flowchart of execution on CUDA. 
 
Modern GPUs have highly parallel structures, which make them more effective than 
general-purpose CPUs in executing algorithms to process large blocks of visual data in 
parallel. The NVIDIA GPU was chosen to solve displacement-evaluation problems in 



  

the present work because, as a CUDA-enabled GPU, it simplifies parallel programming 
for GPU architectures. OpenMP is used to retrieve image files to reduce the execution 
time of the system, and DIC is implemented with CUDA to improve computing 
performance. 
 
4. METHODS 
 
     The proposed system relies upon a novel HTP suitable for painting on the surface 
of a structure. The location of this pattern affects the accuracy of estimation of the 
displacement of the structure. Figure 4 presents a method for estimating the original 
location (x0, y0) of the top-left corner of the HTP. First, two acquired images are 
selected and denoted as S and P, with S being an undeformed image, and P being an 
ideal HTP. A simple difference method compares S against P pixel by pixel, and returns 
an image D of the differences between the images under comparison, consistent with 
Eq. (2). The difference in pixel brightness is represented as an integer value within the 
range 0 to 255. Two pixels are considered exactly identical if the difference between 
the intensities of the two images is zero. Though the differences in the background will 
tend to be close to zero, the differences between non-background pixels will be 
relatively large. 

 PSD   (2) 

 

 

Fig. 4 Pattern location is estimated by comparing the source image with the ideal HTP 
using DIC coefficient. The three largest circles (green, blue, and pink) indicate the three 

largest correlation coefficients. The highest correlation coefficient is calculated in x+ 
direction. 

 
Another method for estimating the location of a pattern is the six point reference (SPR) 
method. If we assume that the target image block is located in the center of the HTP, 
the sum of the corresponding six weighted pixel values can be obtained from the 
predefined distance from the center to the bottom of six triangles in the HTP. The six 
pixels (P1~P6) located at a predefined distance (d) from the center and with predefined 
weights (+1, -1). Generally, the six pixels consist of three black dots and three white 
dots. In an ideal situation, the grey values of the black and the white dots are 
respectively 0 and 255, and the reference value pursuant to Eq. (3) is 765. The 
maximum reference value that corresponds to the coordinates is located close to the 



  

center of the HTP. As the specific distance (d) is within the range of the HTP, the 
difference between the reference values for different distances is not excessively large, 
and the common statistical concept of standard deviation can therefore be used to 
analyze multiple reference values for various distances. In this case, a smaller standard 
deviation indicates that the central position is more likely to be the real center of the 
HTP. However, when the central position c is located in an entirely black or white block, 
the standard deviation is also very small, and this may lead to a false positive being 
obtained. Therefore, a threshold level of SPR is selected as a baseline to assist with 
locating the center of the HTP. Based on the results of the present and previous 
experiments, a threshold of 70% of the ideal reference value (765) works well. 

 531642 PPPPPPSPRd   (3) 

The approximate coordinates of the pattern as determined by Eqs. (4)-(6) are located 
using a mean-max method. This involves calculating the means of all columns and 
rows in the image D. The maximum means of the columns and rows are used as the x 
and y coordinates, respectively. 
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Our algorithm creates an ideal HTP for use in calculating the coefficient of correlation 
between a source image and an ideal pattern. The correlation coefficient has many 
potential formulations, but the following one is used here: 
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In Eq. (7), f and g are pixels of image blocks that represent sub-blocks of the source 

image and the target image, respectively, and   is the mean operator. The minimum 

difference between the coordinates of image blocks is 1; therefore, the precision of this 
method is expressed as an integer pixel value, in the case of original images. Target 
images, on the other hand, are broken down into a sub-pixel scale, as sub-pixel 
analysis can improve the precision of the method. 
Finally, a bilateral search can determine the two maximal correlation coefficients that 
correspond to x and y coordinates, and an additional coordinate can be determined 
from these. For example, the coordinate of the maximal correlation coefficient that 
corresponds to the x-axis is in the positive direction (right), and the coordinate of the 
maximal correlation coefficient that corresponds to the y-axis is in the negative direction 
(up). An additional point is set at the aforementioned coordinates and the correlation 
coefficient at that point is computed (Fig. 4). Notably, the correlation coefficient of the 
new point may be less than the previous maximal correlation coefficient. Therefore, the 
three largest correlation coefficients are evaluated simultaneously to determine the 
adaptive direction of motion; i.e., a case in which cc_max in x+ is 0.8 and cc_max in x- 
is 0.3 can indicate that the adaptive direction is a positive direction along the x-axis. 



  

The initial location ),( VU  becomes the new location ),( VxU   in the next iteration. 

Through the proposed approach’s iterative process, the final maximal correlation 
coefficient is determined and the coordinates of the pattern are found. 
Figure 5 presents a formula for a particular pixel value at sub-pixel resolution. The 
maximal correlation coefficient can be evaluated in terms of displacement at sub-pixel 
accuracy. Given that pixel grayscale values in this work range from 0 to 255, a pixel 
value precision of 0.1 can be deemed acceptable. A target block that is closer to the 
pattern of a target image generally implies that the correlation coefficient of the target 
and reference blocks is larger. The algorithm attempts a bilateral process to obtain the 
maximal correlation coefficient. Much computing time was wasted in the former iterative 
process, so parallel processing can be deemed preferable. 

 

Fig. 5 Formula (sP1) for estimating the gray level of sub-pixels. For a block that must 
be resampled owing to sub-pixel displacement, the gray level of every pixel must be 

recalculated using this formula. 
 
For acquired images, the original unit of length used in the measurement of image 
displacement is the integer pixel. The actual length (L) of the HTP is a known quantity, 
and the pixel width (W) of the HTP is evaluated using our measurement system. Actual 
structural displacement can be calculated using the product of the estimated pixel 
displacement and a pixel ratio (Rp), which is obtained from Eq. (8). Time-history 
displacements are thus all estimated in the digital image measurement system. 
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5. EXPERIMENTAL RESULTS 
 
     In our experiment, the DIC method was implemented on an NVIDIA GTX-580 
GPU with 512 CUDA cores and 1536MB of GDDR5X memory. In addition to the GPU, 
the workstation consisted of two Intel Xeon X5660 2.8 GHz, each of which had six 
physical cores, 12 logical cores, and 48GB RAM. 
 



  

5.1 Results of simulation 
     This experiment involved two image resolutions, as shown in Figure 2. First, the 
camera lens focused on the second floor at a high resolution. Figures 1(b), 1(c) and 2(c) 
present sample captured images with high resolution. The 1940 El Centro earthquake 
was simulated using a Quanser Shake Table II, and the time-history displacement was 
estimated from the measurements made using our digital image measurement system. 
The curve of LVDT was very similar to that estimated using the digital image 
measurement system, and the peak frequencies calculated using FFT (fast Fourier 
transform) were 0.1258944579 and 0.1259031566, respectively. The relative error in 
the frequency was -6.90952E-05, and the root mean square (RMS) error was 
0.020523298. 
 

5.2 Performance of parallel computing 
     Five image-block sizes, 161×41, 201×41, 201×61, 201×101, 201×201, 301×201, 
301×251, 301×301 and 401×401, were used in the analysis program, and the 
computing performance was evaluated for each of them. Figure 6 presents the 
execution times of the DIC method when using twice the amount of data about a 
simulated building for each image-block size. Three comparisons were made, using 
sequential processing and CUDA. In the chart, a larger image block reflects greater 
computational time; it reveals that CUDA outperformed sequential computation. The 
execution-time ratio is defined as the ratio of the execution time of sequential 
processing to that of CUDA. In ascending order from small to large image blocks, the 
execution time ratios we obtained were 11.8, 13.63, 19, 26.47, 40.99, 49.38 and 52.65. 
 

 

Fig. 6 Execution times of DIC in the proposed digital image measurement system, for 
the amount of data about a simulated building with various image-block sizes. 

 



  

To increase the effectiveness of parallel computing, the amount of data of about the 
simulated building was increased to four times using data copying. Figures 6 and 7 
present the execution time and performance, respectively, for one and four levels. The 
computing performance curve in Fig. 7 is similar to that in Fig. 6. In ascending order 
from small to large image blocks with four levels, the execution-time ratios were 14.29, 
16.83, 22.17, 31.97, 46.54, 55.86, 59.83, 62.98 and 71.57. The ratios in Fig. 7 indicate 
that parallel computing is suitable for processing the large amounts of data required by 
our system. 
 

 

Fig. 7 Execution times of DIC in the measurement system, for four times the amount of 
data about a simulated building with various image-block sizes. 

 
6. CONCLUSIONS 
 
     Our experimental results indicate that the novel digital image measurement 
system proposed in the present study is a workable means of making non-contact 
measurements, and reduces the overall time for estimating the displacement of 
structures by using GPU parallel processing. According to the results of the 
displacement-measurement experiments in our previous study, the time-history 
displacement estimated using our digital image system is very similar to that estimated 
using LVDT, indicating that the DIC method is efficient and accurate. System 
computing performance can be improved, relative to sequential processing, using GPU-
based parallel computing. In our experiment, the GPU-based parallel computing 
technique was 71.57 times as effective as single-thread image processing. 
In short, the DIC-based method is efficient, accurate, and suitable for parallel 
computing, and the CUDA-enabled GPU was easy to use for this purpose. Moreover, 
this GPU’s performance improved as the amount of data increased, suggesting that the 



  

system did not reach its maximum performance during our experiment. However, more 
data require more storage memory, and excessive use of GPU memory causes the 
kernel function to crash. Therefore, the load balance of memory usage is a serious 
issue that must be adequately addressed in future research. 
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