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ABSTRACT 
 

     In this paper, correlation analysis of statistical microstructure descriptors and 
effective stiffnesses of particulate composites was demonstrated. Two-point correlation 
function and various morphological properties were extracted from synthetically 
generated RVE with different particle size and volume fraction. Effective stiffnesses of 
the periodic RVE were computed by the FE-based computational homogenization 
method. Correlations between the microstructure variables and effective stiffnesses 
were evaluated. Investigating correlations of the effective stiffness properties with the 
microstructure information, critical design variables for the particulate composite 
materials can be identified. 
 
 
1. INTRODUCTION 
 
 Applications of the state-of-the-art composite materials in aerospace, automotive, 
construction industries have ever been growing. Recently, researches on novel 
strategies for design of composite materials are actively undergoing. For composite 
materials, microstructures and constituents’ properties can be tailored through 
optimization of processing variables to meet a targeted performance in the structural 
level. To realize such paradigm by hierarchical design of composite materials, a 
reference relationship of process-structure-property-performance needs to be identified 
(Olson 1997, McDowell and Olson 2008). To draw the structure-property relationship, 
keys are to identify critical microstructure descriptors and determine effective properties 
of the random microstructure through the homogenization technique. 
 Various analytical and computational homogenization methods are widely used 
for computing effective stiffnesses (Yuan and Fish 2008, Charalambakis 2010). 
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However, it still needs improvement on numerical techniques for homogenization 
(Akpoyomare et al. 2017). Relatively more active researches focuses on microstructure 
descriptors (Fullwood et al. 2010, Xu et al. 2014, Xu et al. 2017). For example, spectral 
representation of microstructure distribution functions was proposed (Fullwood et al. 
2010). Recently, a principal component analysis (PCA)-based descriptor was also 
suggested that can allow analytical approximation of the structure-property 
relationship(Xu et al. 2017). However, no single tractable approach exists that generally 
correlates complex microstructure with properties. Analytical approximations for the 
relationship are exorbitantly scarce. 
 The motivation of this study is to design microstructures of particulate composite 
materials that satisfy the targeted properties at the microscale. Toward the final goal, 
structure-property correlations of particulate composites was evaluated first by an 
efficient computational homogenization and microstructure analysis of heterogeneous 
periodic representative volume element (RVE). The two-point correlation function 
(TPCF) is the most widely used second-order descriptor. Therefore, TPCF was 
computed. In addition, morphological features of the microstructures were also 
computed such as principal moment of inertia, radius of gyration in the principal 
direction, surface area, local volume fraction, and the shape index. For correlation 
analysis, volume fraction and particle sizes were varied and effective stiffnesses of the 
RVE under periodic boundary condition (PBC) were computed. 
 In the following section, a statistical microstructure descriptor and morphological 
properties were introduced. In Section 3, an efficient computational homogenization 
method was proposed. The proposed method can take non-matching finite element 
meshes between facing surfaces where PBC is imposed. In Section 4, RVE containing 
randomly distributed particles were analyzed and their results were presented. Finally, 
conclusions were included in Section 6 along with future research directions. 
 
 
2. STATISTICAL MICROSTRUCTURE DESCRIPTORS 
 

For two-phase particulate composites, volume fraction and size of particles are 
main design variables since effective material properties could dramatically change 
depending on the variables. In special materials such as mechanoluminescence (ML) 
composites, the stress intensity in the particles is a critical physical variable, which is 
closely related to morphological shapes. For the reason, we present a morphology 
analysis method on the particles. 
 

2.1 Two-Point Correlation Function 
 

In this section, the TPCF is introduced (Tewari et al. 2004). ߶୧ (i=1 and 2) 
indicates two phases of particulate composites. On a microstructure image, two points 
(S1 and S2) expressed by two position vectors (r1 and r2) are randomly selected. Then 
TPCF is a measure of likelihood of landing of each point S1 and S2 in a particular phase 
(Torquato 2002). It is a function of the magnitude of the vector (r=|r2-r1|). Numerically 
TPCF is calculated as follows (Ghazavizadeh et al. 2012) 
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where ௜ܰ௝ is the number of vectors with the beginning in phase ߶௜ and the end in 
phase ߶௝. In two limiting cases where the magnitude (r) goes to either zero or infinity, 
the TPCF is related with volume fraction (ݒ௜ and ݒ௝) of each phase as 
 lim

௥→଴ ௜ܲ௝ሺݎሻ ൌ ௜ሺ݅ݒ ൌ ݆ሻ, 

lim௥→଴ ௜ܲ௝ሺݎሻ ൌ 0ሺ݅ ് ݆ሻ, 
lim
௥→ஶ ௜ܲ௝ሺݎሻ ൌ  ௝ݒ௜ݒ

(2) 

 
2.2 Morphology Analysis of Particles 
 
Microstructure images such as SEM or micro-computed tomography (μ-CT) 

images consist of digitized three-dimensional (3D) voxels with binary indices or finite 
grey levels. Thus, based on the 3D voxel model, morphological features of the particles 
such as volume, surface area, the second moment of inertia, principal radius of gyration 
and shape index of particles are obtained. 

A criterion for separating a particle from others is applied (Teranishi et al. 2016) 
if neighboring voxels share a surface, they are included in the same particle. However, 
if they do not share a surface and just share edge, vertex or nothing, they belong to 
separated particles. Volume of a particle (V) is calculated by multiplying the number of 
voxels (n) in the particle and a unit volume (V଴) of a voxel. The second moment of 
inertia is calculated by 
௜௝ܫ  ൌ ଴ܸ 	∑ ሺݔ௜

௠ െ పܺഥ ሻ൫ݔ௝
௠ െ ఫܺഥ ൯௡

௠ୀଵ  where  పܺഥ ൌ ଵ

௡
∑ ௜ݔ

௠௡
௠ୀଵ   (3) 

where ݔ௜
௠ is the coordinate of the center of m-th voxel and పܺഥ  is the geometrical 

center of a particle in Cartesian coordinate system (i=1,2,3).  
The principal second moments of inertia (Iଵ,Iଶ and Iଷ) are eigenvalues of ܫ௜௝ . The 
principle radius of gyration is defined as 
 r୧ ൌ ඥܫ௜/ܸ	 where rଵ ൐ ଶݎ ൐  ଷ (4)ݎ

The aspect ratio (a) of a particle is defined as 
 ܽ ൌ  ଵ (5)ݎ/ଷݎ
The inclination of a particle of our interest is described by an angle (θ) between the first 
principal direction and loading axis. Then the surface area is calculated as follows 
 ܵ ൌ ∑ ܵ௨ሺ6 െ ݊௡௕

௠ ሻ௡
௠ୀଵ   (6) 

Where ܵ௨  is the area of one side surface of a voxel; and ݊௡௕
௠  is the number of 

neighboring voxels around m-th voxel. Therefore, the total surface area of an isolated 
voxel is 6S୳. Then the shape index (β) is also defined as 
 β ൌ V/ሺSrଵሻ  (7) 
where S is the surface area of a particle. Based on these morphological features, local 
volume fractions can be evaluated within a spherical volume having a specific radius. 
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 As the volume fraction increases, Eଵଵ and Gଵଶ show increasing tendency but 
vଵଶ shows slightly decreasing tendency but the variation appears marginal. However, 
particle size effect was not clear. To avoid biased results, it is desirable to conduct 
multiple RVE analyses for each of the nine RVEs. 
 
 
5. CONCLUSIONS 
 

In this paper, we demonstrated structure-property correlation analysis for 
particulate composites. TPCF was used as a statistical descriptor and morphological 
properties of particles were expressed in terms of various quantitative measures. 
Effective linear elastic properties were calculated by FE-based computational 
homogenization technique. Applying PBC is challenging for non-matching FE meshes 
on facing surface. Therefore, a numerical interpolation scheme was proposed to 
overcome the challenge. Varying the volume fraction and particle size, the structure-
property correlation was evaluated. Noticeable changes of effective material properties 
were observed by varying the local volume fraction. The proposed microstructure 
analysis method will be a practical suite of analytical approaches and numerical tools 
for hierarchical design of composite materials. 
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