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ABSTRACT 
 

     Recently, reinforced silk with graphene or carbon nanotubes (CNT) has gained 
significant attention as a new type of composites combining natural and man-made 
super materials. We estimate the effective mechanical properties of silk-graphene or 
silk-CNT composites with micromechanical approach based on Mori-Tanaka method. 
First, we consider uniform distribution of CNT reinforcements and perfectly bonded 
interfaces between silk matrix and reinforcement to estimate the ideal effective 
properties. We compute the Young’s modulus and the ideal strength of the composite 
as a function of volume fractions and orientation distribution of reinforcements. The 
effective stress-strain curve of the composite is determined using 2nd order stress 
moment obtained from the field fluctuation method. The fracture properties of the 
composite is calculated by comparing the effective stress of the silk in the composite 
with its strength in pure phase. Second, to account for the realistic composites in 
experiments, we consider the effect of damaged interface between matrix and 
reinforcement and agglomeration of reinforcements. Non-perfect bonding is considered 
in the framework of the modified Mori-Tanaka approach taking linear spring interface 
model. Our study suggests the upper bound of mechanical properties of reinforced silk, 
and possible explanations on the highly variable stiffness and modulus of reinforced silk 
observed in experiments. 
 
1. INTRODUCTION 
 
     Recently, reinforced silk with graphene or carbon nanotube(CNT) has gained 
significant attention as a new type of composites combining natural and man-made 
super materials. (E. Lepore 2015) Some of research found that the effective 
mechanical properties of the composite have been significantly improved against those 
of pure matrix, spider silk. For efficient design of the composite, it is necessary to 
understanding the theoretical background of the improved properties. 
To compute the effective properties theoretically, various micromechanics-based 
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homogenization approaches have been used, such as the Self-Consistent (SC) method, 
the Mori-Tanaka (MT) method, and the Eshelby method. The MT method is the most 
popular method because it provides more accurate predictions on the effective stiffness 
than the Eshelby method and has an explicit and closed-form expression, whereas the 
SC method relies on implicit equations. However, the original MT method has two 
limitations: first, it does not account for the imperfections in the filler-matrix interface, 
such as debonding and slip; second, it is only applicable when all fillers in the matrix 
are aligned perfectly along one direction. 
In this work, we propose an improved micromechanics model to correct the two 
problems regarding the interfacial damage and the orientation average. We 
demonstrate that the singularities in effective modulus prediction can be removed when 
the corrected ܴ tensor is used. We obtain the analytic expressions of ܴ tensor for 
axisymmetric ellipsoidal fillers and validate our results against the numerical integration 
results. We also confirm that our expressions satisfy two limiting cases, i.e., aspect 
ratio of 1 and infinity, at which analytic forms are readily available. (Qu 1993) Instead 
of the 3 െ 1 െ 3 Euler angle in previous research, we use polar and azimuthal angles 
on the unit sphere to represent the inclusion orientation and derive algebraic 
expressions for the general transversely isotropic 4th order tensor under axisymmetric 
filler orientation distribution. We confirm that the longitudinal and transverse elastic 
moduli from our model converge in the random orientation distribution limit. Our results 
can be widely used to describe composites that include particles and fillers at various 
aspect ratios. 
Beyond the linear elastic limit, we calculate effective nonlinear properties such as 
toughness, strength, and elongation for the composite having interfacial damage. The 
method used for this calculations are secant modulus method and field fluctuation 
method which are popular in micromechanics society. By implementing these into 
homogenization method, we calculate effective stress strain curve of the composite for 
various orientation distributions of fillers. Unlike previous researches which predict 
effective stress strain curve for isotropic composite, here we firstly calculate the curve 
of anisotropic composite considering external loading direction, axial direction or 
transverse direction. To predict the toughness and strength of the composite, we study 
failure behavior of the composite by determining failure of each phase for different 
interfacial damage value. We find that the toughness of the composite significantly 
increases at the finite interfacial damage whereas the composite has maximum 
strength at perfect bonding case. 
 
2. PROPOSED FAILURE SURFACE 
 
     The equation for Mori-Tanaka method is expressed as (1),  
ܮ ൌ ሺܿܮ  ܿଵܮଵ: :ሻܣ ሺܿܫ  ܿଵܣሻିଵ       (1) 
where ܮ and ܮଵ are matrix and inclusion stiffness tensor and ܫ is the symmetric 
identity tensor. ܿ  and ܿଵ  refer to the volume fraction of matrix and inclusions, 
respectively; thus, ܿ  ܿଵ ൌ  is the strain concentration tensor which relates the ܣ .1
external strain ሺߝ௫௧ሻ applied to the composite and the volume-averaged strain ሺߝଵሻ 
within the inclusions by the definition of	ߝଵ ≡ :ܣ  ௫௧. After solving linear elasticity forߝ



  

single inclusion problem, the A tensor can be expressed in terms of Eshelby tensor (ܵ) 
and stiffness tensor of matrixሺܮሻ and inclusionሺܮଵሻ, as Eq.(2). 
ܣ ൌ ሾܫ  ܵ: ܮ

ିଵ: ሺܮଵ െ  ሻሿିଵ        (2)ܮ
The Eshelby tensor (ܵ) for the axisymmetric ellipsoidal filler has been derived in the 
literature (Qiu 1990) 
Because the original MT method is only applicable when all the fillers are completely 
aligned and have perfect bonding with the matrix, the modified Mori-Tanaka (mMT) 
approach must be employed to account for the interfacial damage at the interface (slip 
or debonding). To model such interfacial damage, we consider the displacement jump 
across the interface by adopting the linear spring model (Qu 1993) (see Fig.1), 
 

 

Fig. 1 Schematic of interface spring model 
 

Δݑ ൌ ,݊ߪߟ ߟ ൌ ߜߙ  ሺߚ െ ሻ݊ߙ ݊      (3) 
where the ߟ  refers to the compliance of the interface spring composed of the 
tangential 	ሺߙሻ  and normal 	ሺߚሻ  directions. The ݊  represents outward direction unit 
normal vector at the inclusion surface. After solving eigenstrain problem with the 
interfacial springs, the modified Eshelby tensor ሺ ሚܵሻ is given as follows,  
ሚܵ ൌ ܵ  ሺܫ െ ܵሻ: ܴ: :ܮ ሺܫ െ ܵሻ.        (4) 
Here ܴ tensor represents intensity of interfacial damage and a function of the inclusion 
shape and the compliance of interfacial springs. The tensor is expressed as Eq(5) if 
there is only tangential linear spring and in this work, we reformulate the ܴ tensor for 
the case of ellipsoidal inclusion to correct the results from previous studies.  
ܴ ൌ ሺߙ ܲ െ ܳሻ         (5) 
where 
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The non-zero independent components of ܲ and ܳ can be obtained from the integral 
given below: 
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Other components can be obtained by using the symmetry condition in the 2-3 plane as 
well as the minor and major symmetry of ܲ and ܳ tensors. In the limit of zero spring 
compliance (i.e. ߙ ൌ 0), the modified Eshelby tensor ൫ ሚܵ൯	becomes the original Eshelby 
tensor ሺܵሻ because ܴ becomes zero tensor. The effective moduli in the mMT scheme 
can be obtained by replacing the original Eshelby tensor ሺܵሻ with the modified Eshelby 
tensor ൫ ሚܵ൯ (Qu 1993),  

ܮ ൌ ൫ܿܮ  ܿଵܮଵ: :ሚ൯ܣ ൫ܿܫ  ܿଵܣሚ  ܿଵܴ: :ଵܮ ሚ൯ܣ
ିଵ

     (9) 

where ܣሚ is the modified strain concentration tensor, ܣሚ ൌ ܫൣ  ሚܵ: ܮ
ିଵ: ሺܮଵ െ ሻ൧ܮ

ିଵ
. 

 

 

Fig. 2 (A) Coordinate system for orientation average scheme. (B) Effective modulus as 
a function of degree of alignment (݇). 

 
The modified Mori-Tanaka method is only applicable for the composites with completely 
aligned inclusions. However, in the realistic composites, fillers are partially aligned as 
depicted in Fig. 2. Because the inclusions in the liquid-state matrix are drawn along one 
axis (Xଵ) in most manufacturing processes and experiments, we limit our focus on the 
axisymmetric orientation distribution. Following the previous studies (Odegard 2003), 
we define the orientation averaged Mori-Tanaka (oaMT) as Eq. (10). 

ܮ ൌ ൫ܿܮ  ܿଵ ൏ :ଵܮ ሚܣ ൯: ൫ܿܫ  ܿଵ ൏ ሚܣ  ܿଵ ൏ ܴ: :ଵܮ ሚܣ ൯
ିଵ

       (10) 
where the operator ൏ denotes the orientation average scheme of tensor. When the 
orientation distribution ߣሺߠሻ is function of	ߠ only, i.e. for axis-symmetry distribution, the 
orientation average of an arbitrary 4th order tensor X can be defined as 
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where ߠ and ߶ are azimuthal and polar angle with respect to the global coordinate 
(see Fig. 2(A)). ܺ′ is the tensor transformed to global coordinate system. Following the 
coordinate transformation rule of 4th order tensor with rotation matrix ࢉ, ܺ

ᇱ  can be 
expressed as Eq.(12). 

ܺ
ᇱ ൌ ܿ ܿܿܿ௦ܺ௦			ࢉ ൌ 

cosߠ െsinߠ 0
sinߠcos߶ cosߠcos߶ െsin߶
sinߠsin߶ cosߠsin߶ cos߶

൩       (12) 

The axisymmetric orientation distribution function can be categorized into three types: 
3D random, normal distribution, and aligned. 
 
ሻߠሺߣ ൌ 1 : 3D random distribution  
ሻߠሺߣ ൌ expሺെ݇ߠଶሻ : normal distribution          (13) 
ሻߠሺߣ ൌ  ሻ : aligned distributionߠሺߜ
 
As visualized in Fig. 2(B), when ݇ in the normal distribution function goes to zero or 
infinite, the distribution converges to random or fully aligned distributions, respectively. 
We note that previously used 3 െ 1 െ 3  Euler angle set cannot describe the 
axisymmetric distribution along the Xଵ axis due to the geometrical constraint, while 
several studies have adopted the 3 െ 1 െ 3 Euler angle set to describe the composites 
with axisymmetric filler orientation distribution. When ݇ goes to zero, i.e., for a random 
orientation distribution, the composite must behave as an isotropic material. However, 
the longitudinal and transverse Young’s modulus from the previous study do not 
converge to the same value in the random orientation limit. In contrast, the oaMT with 
our orientation average scheme predicts that both longitudinal and transverse moduli 
approach the same modulus of the composite with randomly oriented fillers, whose 
analytic expression is available. 
 

Table. 1 Material properties of spider silk and CNT. 
Material properties Spider silk Carbon nanotube (CNT) 
Young’s modulus (ܧ) 0.5 GPa  
Poisson’s ratio (ߥ) 0.4  
Longitudinal Young’s modulus (ܧ)  1.06 TPa 
Transverse bulk modulus (ߢଶଷ)  271 GPa 
Transverse shear modulus (ߤଶଷ)  17 GPa 
In plane shear modulus (ߤଵଶ)  442 GPa 
In plane Poisson’s ratio (ߥଵଶ)  0.162 
 
We calculate effective moduli of reinforced silk having partially aligned CNT and 
interfacial damage by changing variables such as volume fraction, degree of alignment, 
and aspect ratio of CNT. (Table. 1) As shown in Fig. 3, the effective moduli of the 
composite which has interfacial damage predicted for the range of aspect ratio. The 
moduli for interfacial damage increase as the aspect ratio of inclusion increases and 
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To investigate mechanical behavior of composite having interfacial damage, we 
consider the composite with fully aligned CNTs. As interfacial damage increases, the 
strength of the composite decreases. However, the toughness has maximum value at 
finite interfacial damage (see Fig. 5). To explain the reason, we calculate effective 
stress strain curve of reinforced silk for two different interfacial damage parameter. As 
shown Fig. 5, the composite show saw-tooth shape stress strain curve for moderate 
interfacial damage because the CNT breaks before matrix fails. After CNTs fail, we 
increase external loading until matrix fail with the assumption that the CNT with length 
of ܮ are separated as two CNTs with each length of 2/ܮ. As a results, the toughness, 
which means energy absorption until failure show maximum at finite interfacial damage. 

 

Fig. 5 (A) Effective stress strain curve for various interfacial damage. (B) Toughness as 
a function of interfacial damage. Stress-strain curve of composite having small(C) and 

large(D) interfacial damage. 
 
3. CONCLUSIONS 
 
We use micromechanics-based approaches to predict the effective properties of 
reinforced silk with CNT. We have solved the mathematical problems in the linear 
spring model for displacement jump at the interface and calculated the effective 
properties of the composite with partially aligned CNTs considering the orientation 
distribution. Beyond the linear elastic limit, we calculate the effective stress strain curve 
of a composite for various orientation distribution. By determining the failure of each 
phase and taking into account interface damage, we can describe the mechanism for 
toughening of the composite against pure silk. 
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