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ABSTRACT 
 

     Understanding the hydrogen-assisted cracking in multiphase steels is of scientific 
and engineering importance. A combination of scanning electron microscopy (SEM) 
and scanning probe microscopy (SPM) is applied to investigate the micromorphology of 
fracture surface and microcrack formation in hydrogen-precharged super duplex 
stainless steel. Hydrogen precharging was performed in gaseous hydrogen under 138 
MPa pressure at 573 K and slow strain tensile testing was performed at room 
temperature in air. It is observed that the fracture surface consists of quasi-brittle facets, 
which exhibit small dimplelike patterns or quasi-periodic corrugation patterns at the 
nanoscale. The hydrogen-assisted microcracks preferentially initiate and grow in ferrite 
phase and are stopped or deflected by the boundaries of the austenite phase. The 
hydrogen-assisted cracking mechanisms in duplex stainless steel are discussed on the 
base of the experimental results and hydrogen-enhanced localized plasticity theory. 
 
1. INTRODUCTION 
 
     Duplex stainless steels consisting of austenite (γ) and ferrite (α) provide excellent 
combination of mechanical properties and corrosion resistance, and thus have been 
widely used in the oil and gas, petrochemical, paper and nuclear industries. However, 
their very favorable properties are degraded due to hydrogen embrittlement (HE) 
(Marrow 1991, Zheng 1991). The microscopic analysis of hydrogen-induced cracking in 
duplex stainless steels have shown that hydrogen-induced microcracks often start and 
grow in the ferrite phase and can be arrested in the austenite phase (Zucchi 2007, 
Olden 2007, Olden 2008, Olden 2009, San Marchi 2007, Elhoud 2010). The hydrogen-
assisted fracture surfaces generally consisted of multifacets and riverlike patterns were 
commonly observed on each facet (Olden 2009, San Marchi 2007). Therefore, it was 
considered that the formation of cleavage microcracks in ferrite phase is the first step of 
hydrogen-assisted fracture in duplex stainless steels, and then the cleavage 
microcracks in ferrite phase are linked by more ductile fracture in austenite phase 
(Zucchi 2007, Olden 2007, Olden 2008, Olden 2009, San Marchi 2007, Elhoud 2010). 
Olden et al. (2008, 2009) stated that hydrogen-enhanced decohesion model (HEDE) 



  

rules fracture in ferrite phase and hydrogen-enhanced local plasticity model (HELP) is 
the main fracture mechanism in austenite phase. San Marchi et al. (2007) proposed a 
model in which the microcracks in ferrite phase are formed by stress concentrations 
induced by HELP in the austenite phase. However, there is a paucity of direct 
experimental evidence for such local fracture mechanisms. 

Scanning probe microscopy (SPM), including scanning tunneling microscopy 
(STM), atomic force microscopy (AFM) and magnetic force microscopy (MFM), is a well 
known tool for imaging the surface morphology and magnetic microstructure of 
materials at high resolution. Recently, the present authors and colleagues successfully 
applied these techniques to identify the micromechanisms for hydrogen-assisted 
fracture in stainless steels (Zhang 2010, Zhang 2011, An 2013).  

In this study, we observe the micromorphology of the fracture surface and 
microcrack formation in hydrogen-precharged super duplex stainless steel tensile 
tested at room temperature in air, by combined SEM, STM, AFM and MFM. 
 
2. EXPERIMENTAL 
 

Super duplex stainless steel (25.22% Cr, 6.94% Ni, 0.46% Mn, 3.9% Mo, 0.287% 
N, 0.011% C, 0.25% Si, 0.019% P, and 0.0006% S) with a nominal phase distribution of 
50% austenite and 50% ferrite was used. The hydrogen-precharging and the tensile 
testing were carried out by San Marchi et al. in Sandia National Lab. The tensile 
specimens were thermally hydrogen-precharged in 138 MPa hydrogen gas at 573 K in 
a pressure vessel for 10 days. Tensile testing was performed at room temperature in air 
with a strain rate of ∼10-3 s-1. After tensile testing, hydrogen concentrations were 
measured from samples taken from the specimens away from deformation regions. The 
hydrogen concentration was in a range from 120 to 130 wppm. The details of tensile 
testing have been published by San Marchi et al. (2007). 

The fractured tensile specimens were longitudinally sectioned and mounted in 
epoxy resins to reveal the area below the fracture surface. The longitudinal sections 
were ground with sandpaper and electropolished in a solution of 20% perchloric acid, 
70% ethyl alcohol and 10% glycerin. The fracture surfaces and longitudinal sections of 
the specimens were analyzed by SEM, STM, AFM and MFM at room temperature. 
STM, AFM and MFM observations were conducted in air using a Nanoscope IIIa Multi-
SPM. STM images were obtained in the constant current mode with the tip bias from 
500 to 800 mV and the tunneling current from 0.3 to 0.5 nA. AFM and MFM images 
were obtained in the tapping/lift mode with a lift height of 100 nm. Both the specimen 
and the magnetically coated MFM probe were magnetized by a permanent magnet with 
a field of 3800 G prior to MFM and their polarity were set to be opposite. 
 
3. RESULTS AND DISCUSSION 
 

Figure 1 shows the SEM images taken from the fracture surface and longitudinal 
section near the fracture surface of the hydrogen-precharged specimen. The fracture 
surface of the hydrogen-precharged specimen consists of relatively flat quasi-brittle 
facets with riverlike patterns, as shown in Fig. 1(a), while that of the non-charged 
specimen shows classic ductile dimples (not shown here). The facets on the fracture 
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