
  

 
 
 

Hydrogen permeation of black oxide-treated and diamond-like carbon 
-coated bearing steels using high-pressure hydrogen gas 

 
*Junichiro Yamabe1),4), Daiki Takagoshi2), Hisao Matsunaga3),4),  

Hiroki Yamada5) and Hideyuki Uyama5) 
 

1) International Research Center for Hydrogen Energy, Kyushu University, Fukuoka 819-
0395, Japan 

2) Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan 
3) Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, 

Japan 
4) HYDROGENIUS, Kyushu University, Fukuoka 819-0395, Japan 

 5) NSK Ltd., Kanagawa 251-8501, Japan 
1) yamabe.junichiro.575@m.kyushu-u.ac.jp 

 
 
 

ABSTRACT 
 

Hydrogen-entry properties of black oxide (BO)-treated and diamond-like carbon 
(DLC)-coated bearing steels, namely JIS-SUJ2, were investigated using high-pressure 
hydrogen gas. First, the hydrogen diffusivities of non-coated and palladium (Pd)-coated 
bearing steels were determined using cylindrical specimens. After exposing the 
specimens to hydrogen gas at a pressure of 100 MPa and a temperature of 85°C for 
400 h, the hydrogen contents of the H-charged specimens were measured at constant 
temperatures in the range of 30–120°C using gas chromatography–mass spectroscopy. 
The hydrogen diffusivity was determined by fitting the solution of a diffusion equation to 
the experimental hydrogen contents measured at various constant temperatures. The 
hydrogen diffusivity of JIS-SUJ2 was approximately one order of magnitude lower than 
that of Cr–Mo steels. The temperature dependence of the hydrogen diffusivity of JIS-
SUJ2 was successfully fitted using an Arrhenius-type equation. The activation energy 
of the hydrogen diffusivity was estimated to be 28 kJ/mol, which was approximately 
equal to that of the Cr–Mo steels. The following specimens were prepared from round 
bars of JIS-SUJ2: (1) non-coated, (2) BO-treated, (3) DLC-coated, and (4) Pd-coated 
specimens. After exposing the specimens to hydrogen gas at a pressure of 100 MPa 
and a temperature of 50°C for 27 h, the specimens were cut to 0.8-mm-thick samples. 
The hydrogen contents were then determined by increasing the temperature using 
quadrupole mass spectrometry. The results show that the hydrogen contents of the 
DLC-coated and Pd-coated samples were higher than the non-coated and BO-treated 
samples. The depth profiles of various elements obtained using Auger electron 
microscopy showed that the non-coated sample exhibited a native oxide layer with a 
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thickness of a few nanometers. An oxide layer was also formed in the BO-treated 
sample. However, the oxide layer was hardly observed on the surface of the DLC-
coated sample. Moreover, the surface of the Pd-coated sample was covered with a Pd 
layer. A difference in the hydrogen contents between the samples is observed because 
the oxide layer in the surface inhibited the hydrogen dissociation. The experimental 
results show that the BO treatment and DLC coating failed to block the entry of 
hydrogen in a high-pressure hydrogen-gas environment. 
 
 
1. INTRODUCTION 
 

White structure flaking (WSF) is a type of premature failure observed in roller 
bearings (Evans 2012). It is well known that white etching areas are characteristic of 
WSF at a depth where the maximum shear stress is produced beneath a contact part of 
a roller bearing. The WSF is related to the hydrogen content in a material. Endo et al. 
(2004) conducted a rolling fatigue test wherein the hydrogen environment caused a 
significant degradation in the rolling fatigue life. Uyama et al. (2012) reported that the 
WSF was reproduced by rolling fatigue tests conducted on H-charged specimens. 
Based on these existing results, a model representing that the diffusible hydrogen 
generated in a tribochemical reaction of lubricants promotes the WSF has been 
proposed (Iso 2005). Because the hydrogen often degrades the tensile and fatigue 
properties of metals (Matsunaga 2015; Yamabe 2016), the hydrogen affects the WSF.  

To prevent the WSF in rolling bearings, diamond-like carbon (DLC) coating is 
extensively applied to contact surfaces of the rolling bearing. Uyama et al. performed 
contact fatigue tests on non-coated and DLC-coated bearing steels under an 
environment wherein hydrogen is easily produced by decomposition of a lubricant. The 
results show that the WSF occurred in the non-coated steel, whereas it did not occur in 
the DLC-coated steel. This experimental result demonstrates that the DLC coating can 
be used to improve the resistance to the WSF. If the hydrogen produced by the 
decomposition of a lubricant affects the WSF, the DLC coating may have the capability 
to mitigate the hydrogen production or the hydrogen entry into the bearing steel. 
Among the influencing factors, it is difficult to directly analyze the hydrogen production. 
Hence, this study focuses on the hydrogen entry into a DLC-coated bearing steel. 

Before identifying the resistance of the DLC coating to hydrogen entry, the 
hydrogen-diffusion properties of the bearing steel need to be determined. The 
hydrogen diffusivity of BCC steels is significantly affected by the lattice defects such as 
dislocations and vacancies (Kiuchi and McLellan 1983); hence, the hydrogen diffusivity 
should be identified in each steel. With regard to the hydrogen diffusivity of JIS-SUJ2, 
Matsubara and Hamada (2006) measured the hydrogen diffusivity at room temperature 
(RT) using an electrochemical permeation method; however, the temperature 
dependence of the hydrogen diffusivity in JIS-SUJ2 should be investigated in a 
practical environment. 

This study focuses on the temperature dependence of the hydrogen diffusivity in 
a bearing steel, namely JIS-SUJ2, using a hydrogen-desorption method with high-
pressure hydrogen gas (Matsuo et al. 2014; Yamabe et al. 2015). To analyze the 
resistance of the DLC coating to hydrogen entry, hydrogen-entry properties of JIS-
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Finally, it was interpreted that under the exposure to hydrogen gas at a pressure 
of 100 MPa and a temperature of 50°C for 27 h, the hydrogen entry in the Pd-coated 
samples occurred via the diffusion-controlled process, whereas the hydrogen entry in 
the other samples occurred via the surface reaction-controlled process. Nevertheless, 
the hydrogen content of the Pd-coated sample, shown in Fig. 5 (CH/CS ≈ 0.65), was 
lower than that expected via the hydrogen diffusivity, shown in Fig. 4 (CH/CS ≈ 0.90). 
This is because the trapping sites associated with non-diffusible hydrogen substantially 
affected the hydrogen diffusion in the Pd-coated sample, shown in Fig. 5. In fact, the 
ASTM G148 standard recommends performing multiple hydrogen permeation tests, 
preferably three permeation tests, to mitigate the effect of trapping sites associated with 
the non-diffusible hydrogen on the hydrogen permeation and obtain stable permeation 
curves. Moreover, we found that CH/CS ≈ 0.90 for the second hydrogen-entry test 
conducted on the Pd-coated sample, wherein the effect of the trapping sites associated 
with the non-diffusible hydrogen was mitigated via the first hydrogen exposure. The 
rates of hydrogen entry and hydrogen desorption depend on the initial condition of 
hydrogen states. 

 
 

4. CONCLUSIONS 
 

This study investigated the hydrogen diffusivity of a bearing steel, namely JIS-
SUJ2, and the effect of black oxide (BO) treatment and diamond-like carbon (DLC) 
coating on the hydrogen entry of JIS-SUJ2 under a high-pressure hydrogen-gas 
environment. As a reference, palladium (Pd) was coated on JIS-SUJ2 to promote 
hydrogen dissociation on the surface of the specimen. The conclusions of this study are 
summarized as follows: 

 
(1) The hydrogen diffusivity of JIS-SUJ2 could be fitted using the Arrhenius-type 

equation, showing one order of magnitude lower than that of Cr–Mo steels. 
(2) The activation energy of the hydrogen diffusivity ED for JIS-SUJ2 was 

approximately equal to that of tempered Cr–Mo steels, where ED = 28 kJ/mol. 
The hydrogen in both JIS-SUJ2 and Cr–Mo steels was largely trapped by the 
elastic field of the dislocations, and the difference in the hydrogen diffusivities 
between JIS-SUJ2 and Cr–Mo steels was attributed to the difference in their 
dislocation densities. 

(3) After the exposure to hydrogen gas at a pressure of 100 MPa and a 
temperature of 50°C for 27 h, the hydrogen contents in the coated samples 
were in the following order: Pd-coated > DLC-coated > non-coated ≈ BO-
treated samples. This reveals that the DLC coating and BO treatment could 
not be used to block hydrogen entry under the high-pressure hydrogen-gas 
environment.  

(4) The depth profiles of various elements measured using auger electron 
microscopy showed that the oxide layer was hardly observed on the surface of 
the DLC-coated sample, which is different from that observed in the non-
coated and BO-treated samples. This infers that under the exposure to 
hydrogen gas at a pressure of 100 MPa and a temperature of 50°C for 27 h, 



  

the hydrogen entry in the samples was strongly related to the surface reaction 
of hydrogen, and the hydrogen entry was blocked via the inhibition of 
hydrogen dissociation.  
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