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ABSTRACT 
 

     This paper proposes a novel broadband energy harvester to concurrently harvest 
energy from base vibrations and wind flows by utilizing a mechanical stopper. A 
problem for a conventional wind energy harvester is that it can only effectively harness 
energy from two types of excitations around the resonance frequency. The proposed 
energy harvester consists of a D-shape-sectioned bluff body attached to a piezoelectric 
cantilever, and a mechanical stopper fixed at the bottom of the cantilever to introduce 
frequency up-conversion through impact with the bluff body. The experimental results 
show that at the stopper-harvester distance of 19.5mm, the proposed harvester 
effectively harnesses energy from both vibration and wind from 17.3Hz to 19.1Hz with a 
power level from 3.0mW to 3.8mW at the wind speed of 5.5m/s and the base 
acceleration of 0.5g. 
 
1. INTRODUCTION 
 
     The field of energy harvesting has received ever growing research interests in the 
recent years. The ultimate goal is to implement self-powered microelectronic systems 
such as wireless sensor networks by eliminating the dependency of batteries which are 
with limited lifespans and require cumbersome replacements. Available energy sources 
surrounding the electronic systems include solar energy, mechanical vibrations, 
electromagnetic radiation, thermal gradients and wind flows. Considerable research 
efforts have been devoted to piezoelectric energy harvesting from base vibrations with 
various techniques to broaden the operational frequency bandwidth and improve the 
energy conversion efficiency (Liu et al., 2011; Zhou et al., 2013; Harne and Wang, 
2013; Yang and Zu, 2016). These efforts include developing energy harvesters with 
close multiple modes, introducing nonlinearity, such as stiffness nonlinearity, to achieve 
monostability, bistability or tristability, employing frequency up-conversion technique, 
and so on. Besides the pre-existing mechanical vibrations, the bulky kinetic energy in 
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the ambient wind flows provides an alternative on-site power source. Researchers have 
employed various aeroelastic instabilities to harness the kinetic energy in wind flows, 
including vortex-induced vibration (VIV) (Akaydin et al., 2012), galloping (Sirohi and 
Mahadik, 2011; Zhao et al., 2014; Zhao and Yang, 2015), aeroelastic flutter (Bryant 
and Garcia, 2011), wake galloping (Abdelkefi et al., 2013), and turbulence-induced 
vibration (Hobeck and Inman, 2014).  
 
     Most studies in the literature have considered one type of energy source, either 
pre-existing base vibrations or wind flows. However, there are many circumstances 
where wind flows and base vibrations are coexisting, such as on the heavily travelled 
bridges, ships, aircrafts, supporting structures of offshore infrastructures, and the 
numerous buoys in the ocean. These two types of energy sources can be 
simultaneously harvested to power the sensors or other microelectronic devices. 
Recently, concurrent wind and vibration energy harvesting has been studied with a 
flutter energy harvester (Bibo and Daqaq, 2013a; 2013b), with a VIV energy harvester 
(Dai et al., 2014), and with a galloping energy harvester (Yan et al., 2014; Bibo et al., 
2015). However, a major problem with these traditional energy harvesters is that they 
can only effectively harness energy from the combined excitations around the 
harvesters’ fundamental frequencies. There is only a narrow bandwidth around the 
resonance where the two energy sources can efficiently lock in and supplement each 
other. This is due to coexistence of two different frequencies resulting from the two 
types of excitations, making the harvester undergo quasi-periodic oscillations if the 
base vibration frequency deviates from the resonance. As a result, the peak 
displacement amplitude is high in a very wide frequency range, yet the effectively 
harvested average power is low except around resonance.  
 
     In this paper, we propose a novel broadband energy harvester to concurrently 
harvest energy from base vibrations and wind flows based on galloping. By utilizing a 
mechanical stopper, the quasi-periodic oscillations will be converted to periodic 
vibrations when the base frequency deviates from resonance. The bandwidth for 
effectively harvesting energy from both vibration and wind is greatly widened.  
 
2. PROPOSED DEVICE CONFIGURATION 
 
     The configuration of the proposed broadband energy harvester for concurrent 
base vibration and wind energy harvesting is shown in Fig. 1. A piezoelectric element is 
bonded to a cantilever near its root area. A D-shape-sectioned bluff body is attached to 
the free end of the cantilever to induce the wind-induced galloping instability. The flat 
surface is adjusted to be facing the wind flow. Another cantilever is fixed at a certain 
distance above the cantilever as a mechanical stopper. An energy harvesting interface 
circuit is connected across the electrodes of the piezoelectric element to further transfer 
the generated electrical charge, which is resulted from the piezoelectric effect during 
the alternating deformation of the energy harvester. 
 
     The resonance frequency of the stopper is chosen to be much higher than the 
energy harvester. When the oscillation amplitude of the energy harvester is sufficiently 
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     The analytical model for the proposed energy harvesting system is established by 
considering the aero-electro-mechanical coupling behaviors between the structure, 
piezoelectric material and airflow. A lumped parameter model is established of which 
the schematic is shown in Fig. 2. The electromechanically coupled equation of motion 
of the system is given by 
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where M1, C1 and K1 are, respectively, the effective lumped mass, damping and 
stiffness of the energy harvester; M2, C2 and K2 are, respectively, the effective lumped 
mass, damping and stiffness of the stopper; f1 and f2 are the correction factors for the 
forcing function for the energy harvester and the stopper, respectively (Erturk and 
Inman, 2008); θ is the electromechanical coupling coefficient; V is the generated 
voltage across the piezoelectric element; Fa is the aerodynamic force for wind-induced 
galloping instability; D is the distance between M1 and M2; and u1, u2 and z0 are, 
respectively, the relative vibratory motions of M1 and M2 to the base, and the external 
base motion. It should be noted that in order to ensure the resonance frequency of the 
stopper to be much higher than that of the energy harvester, it is chosen that M1 is 
much larger than M2, while K1 is much smaller than K2. The circuit model with coupling 
is given by  

1 0pI C V x                                   (3) 

where I is the output current, and Cp is the piezoelectric capacitance.  
  
     The aerodynamic model for Fa is established based on the quasi-steady 
hypothesis (Païdoussis et al., 2010), given by 
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where ρ, h, L and Ai are the air density, frontal height and length of the bluff body, and 
empirical aerodynamic coefficients, respectively; U is the wind speed; and β is the ratio 
of the rotation angle to the vertical translation of at the bluff body, which is calculated by 
β=ϕ'(Lt)/ϕ(Lt) with ϕ'(Lt) and ϕ(Lt) being the slope and amplitude of the mass normalized 
fundamental mode shape of the energy harvester at the position of the bluff body 
center, i.e., at x=Lt. The oscillation frequency under galloping is always close to the 
fundamental frequency of the energy harvester, which has been validated 
experimentally in previous studies (Zhao et al., 2013).     
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broadened bandwidth, the peak displacement of the bluff body is beneficially reduced 
to protect the energy harvester from large amplitude vibration.        
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