
 

 

 
1. Introduction 
 

More than two decades ago the idea of adaptive/smart structures has seen the light of day. It denoted the conceptual 

change of structures from passive, deformable systems to active systems capable of sensing changes in their condition and 

performing adequate actions to resist undesired changes (Gabbert and Tzou 2000). The idea has opened up vast possibilities 

to improve structural behavior and features such as vibration suppression (Li and Yao 2016, Oveisi and Nestorovic 2016), 

noise attenuation (Aridogan and Basdogan 2015), shape control (Zhang et al. 2016, Zhang et al. 2017), energy harvesting 

(Biswal et al. 2005), structural health monitoring (Masmoudi et al. 2015), thus offering improved safety, robustness and 

comfort. 

Shell structures with piezoelectric active elements, as a distinctive group of adaptive structures, have drawn a great deal of 

attention from the research community. This may be attributed to the fact that the majority of engineering structures are thin-

walled structures. Additionally, by adding/embedding active elements in the form of thin piezoelectric patches, the thin-

walled structures can be converted into adaptive systems in a relatively simple manner. Piezoelectric material based active 

elements are a common choice for this purpose, as they operate in the required frequency range and offer adequate force, 

electric voltage and stroke ranges for this type of structures. The piezoelectric patches are used as both actuators (reverse 

piezoelectric effect) and sensors (direct piezoelectric effect). 

Design of such structures calls for accurate, reliable and efficient numerical tools. This enables optimization in the early 

design stages related to the structure’s geometry, size, number and position of active elements as well as different parameters 

of the control algorithms. The finite element method (FEM) is typically addressed as the most powerful tool in the field of 

structural analysis. A number of researchers dedicated their work to the development of various finite elements for modeling 

and simulation of piezoelectric active structures. 

Three-dimensional solid elements do not represent the first choice when global structural behavior of thin-walled 

structures is aimed at. However, they offer insight into some local effects not covered by typical shell elements and were 

therefore addressed in the work of some researchers. They require additional techniques to improve their performance when 

used for modeling shell type of structures. Lee et al. (2004) developed an 18-node solid element with the assumed strain 

technique. Braess and Kaltenbacher (2008) used balanced reduced integration in the thickness direction, applied only to a 

portion of the shear term, to formulate a quadratic hexahedral piezoelectric element. Willberg and Gabbert (2012) based a 3D 

piezoelectric finite element for smart structures on the isogeometric approach. 

A number of researchers aimed at formulations that are essentially two-dimensional but offer accuracy and fidelity close to 

three-dimensional formulations. Those efforts resulted in layerwise theories. The Carrera Unified Formulation (CUF) (Carrera 

2003) was used in a number of element formulations (Cinefra et al. 2015a, b). The formulation was also used by Valvano and 
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Carrera (2017) to develop variable kinematic shell elements, in which both the equivalent single layer approach and the layerwise 

approach are used together to combine their advantages in the case of purely mechanical field. This formulation was extended by 

Carrera and Valvano (2017) to coupled electro-mechanical problems.   

In most developments of piezoelectric shell elements, equivalent single layer based theories were addressed as they offer a 

very good balance between the accuracy and numerical effort when the global structural behavior is aimed at. The body of 

literature on the topic is prohibitively large for an exhaustive overview. Both the classical laminate theory (Kirchhoff-Love 

kinematical assumptions) and the First Order Shear Deformation theory (Mindlin-Reissner kinematical assumptions) were 

used in the developments, the latter being more often addressed. The developed elements include both numerically highly 

efficient linear shell elements (To and Liu 2003, Zemčík et al. 2007) and curved quadratic shell elements (Gabbert et al. 

2002, Marinkovic et al. 2006) with various techniques implemented to alleviate the locking phenomena. Although most of the 

developments are for linear analysis, some of the researchers also tackled the problems of geometrically nonlinear analysis in 

their work (Simoes Moita et al. 2002, Rabinovitch 2005, Lentzen et al. 2007, Marinkovic et al. 2008, Rama 2017). Some of 

the developed elements were also implemented in commercial software packages by means of user subroutines (Nestorovic et 

al. 2013, Nestorovic et al. 2014), while a number of studies were aimed at different aspects in modeling piezoelectric 

coupled-field effects (Marinkovic et al. 2009, Piefort 2002, Marinkovic and Marinkovic 2012, Zhang 2014). 

In this paper, two numerically highly efficient, linear shell elements are presented for modeling piezoelectric shell structures 

with piezopatches polarized in the thickness direction. The formulation of the triangular and quadrilateral elements is extended to 

geometrically nonlinear analysis. For this purpose a co-rotational approach (Felippa and Haugen 2005, Nguyen et al. 2016) is 

used. 

 

2. Geometry and mechanical field of the elements 
 

For the sake of brevity, in further text the linear triangular and quadrilateral shell elements will be referred to as SH3 and 

SH4ANS, respectively.  

For treatment of the transverse shear locking effect, the SH3 element uses the discrete shear gap technique as proposed by 

Bletzinger et al. (2000) while the SH4ANS element relies on the assumed natural strain (ANS) approach. In addition, to 

improve the accuracy and stability of the SH3 element, the cell strain smoothing technique proposed by Nguyen-Thoi et al. 

(2013) is implemented. 

Beside the global coordinate system, (x, y, z), the formulation of both elements requires also a local coordinate system, (x, 

y, z), Fig. 1. It is defined so that the local x-axis is oriented from element node 1 towards node 2, while the z-axis is 

perpendicular to the plane defined by the x-axis and a vector orientated from node 1 to node 3. The local y-axis is then easily 

obtained by the cross-product.  

The shell geometry with respect to the local coordinate system is practically regenerated from its mid-surface: 
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where h is the shell thickness, Ni are the shape functions, n indicates the number of nodes of the element (for SH3 n = 3; for 

SH4ANS n = 4), {ez} is the unit vector of the z-axis,  

 
Fig. 1 Geometry and the local coordinate systems of the 3-node and 4-node shell elements 




