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ABSTRACT 

 
An analytical solution technique that is fast and efficient and provides accurate 

results is developed for the fourth-order non-linear differential equation describing the 
transverse vibrations of a beam on a two parameter elastic foundation. The solution 
technique developed is based on a recent novel method of solution, the Adomian 
Modified Decomposition Method (AMDM) which allows solving without discretization, 
perturbation, linearization, or a priori assumptions. All of these have the potential to 
change the physics of the problem. Numerical calculations of vibration frequencies are 
performed and the effect of foundation parameters and loadings on beam vibrations are 
analyzed and discussed. 
 
1. INTRODUCTION  

 
High-speed railway transportation is gaining broad interest around the world due to 

their efficiency, transportation speed, and less pollution potential. However, one of the 
disadvantages of high-speed railways is track vibration and induced noise. Excessive 
track vibration can increase maintenance and down time of the track, require the 
decrease of train maximum allowable speed, reduce train service lifetime and also 
decrease the riding comfort of passengers. Therefore, the vibration response of the 
railway track to moving loading is important in the area of high-speed railway 
transportation. Theoretical model is developed using simple geometries of rail and 
supporting subsoil. It is assumed that the rails act as a finite beam resting on an elastic 
foundation, which is modelled using springs. This model allows developing 
mathematical formulations using the existing beam and foundation theories. 

The method of solution developed here is based on a recent novel method of 
calculation, namely, the Adomian Modified Decomposition Method (AMDM) (Adomian 
1994). This method has been used in other applications to provide fast and accurate 
results (Wazwaz 1999; Wazwaz and El-Sayed 2001). Compared to other existing 
methods the AMDM has advantages of computational simplicity and solving without 
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discretization, perturbation, linearization, or a priori assumptions, all of which has the 
potential to change the physics of the problem (De Rosa and Maurizi 1998). 

 
2. MATHEMATICAL FORMULATION 

 
2.1 Governing equation  
Transverse motion of an Euler-Bernoulli beam resting on an elastic two-parameter 

Pasternak foundation is illustrated in Fig. 1 and can be expressed as in Eq. (1) (Taha 
2017) 

 
 

𝐸𝐼
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
− 𝑘𝑝

𝜕2𝑤

𝜕𝑡2
− 𝜌𝐼

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥2𝜕𝑡2
+ 𝑘𝑤𝑤(𝑥, 𝑡) + 𝜌𝐴

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 𝑞(𝑥, 𝑡) (1) 

 

 
where 𝑞(𝑥, 𝑡)  is lateral excitation, 𝑘𝑤  and 𝑘𝑝  are the linear and shear stiffness of 

foundation, respectively.  
 
 

 
 

Fig. 1 An Euler-Bernoulli beam on a Pasternak foundation. 
 

By using the modal analysis for harmonic free vibration, 𝑤(𝑥, 𝑡) is separated in 
space and time (Tazabekova et al. 2018; Adair et al. 2019; Adair et al. 2019) and Eq. (1) 
reduces to  

 

𝐸𝐼
d4𝜙(𝑥)

d𝑥4
+𝑘𝑝𝜔2𝜙(𝑥) + 𝜌𝐼𝜔2

d2𝜙(𝑥)

d𝑥2
+ 𝑘𝑤𝜙(𝑥) − 𝜌𝐴𝜔2𝜙(𝑥) = 𝑞(𝑥) (2) 

 
Eq. (2) is now made non-dimensional using 
 

𝑋 =
𝑥

𝑙
,   𝜙(𝑋) =

𝜙(𝑥)

𝑙
, 𝐾0 =

𝑘𝑤𝑙4

𝐸𝐼
, 𝐾1 =

𝑘𝑝𝑙2

𝐸𝐼
    𝜆 =

𝜌𝐴𝜔2𝑙4

𝐸𝐼
, 𝛾 = 𝑙2

𝐴

𝐼
, 𝑄 =

𝑞𝐿3

𝐸𝐼
 

 
 and becomes 
 
 d4𝜙(𝑋)

d𝑋4
+ (

𝜆

𝛾
− 𝐾1)

d2𝜙(𝑋)

d𝑥2
+ (𝐾0 − 𝜆)𝜙(𝑋) = 𝑄(𝑋) (3) 



2.2 Distributed harmonic high-speed moving loading  
To apply the loading to the beam the model of a train consisting of a few wagons is 

considered. Loading generated by wagons can be expressed by the finite sum of 
harmonically varying loads and formulated as in Eq. (4) using the Heaviside function, 

 
 

𝑞(𝑥, 𝑡) = ∑
𝑃0

2𝑟
𝑐𝑜𝑠2 (

𝜋(𝑥 − 𝑣𝑡 − (2𝑟 + 𝑠)𝑑)

2𝑟
)

𝐷−1

𝑑=0

∗ 𝐻(𝑟2 −  (𝑥 − 𝑣𝑡 − (2𝑟 + 𝑠)𝑑)2)𝑒𝑖𝛺𝑡 

(4) 

 
where P0 is the load, 2𝑟 is the span of the load, 𝑣 the velocity of moving load, 𝐻(: ) is 

the Heaviside function, 𝑑 is a number of separated impulses, 𝛺 = 2𝜋𝑓𝛺 frequency of the 
moving load and 𝑠 is the distance between them.  

 
Eq. (4) is made non-dimensional using 
 

𝑋 =
𝑥

𝑙
, 𝑅 =

𝑟

𝑙
, 𝑉 =

𝑣

𝑙
, 𝑆 =

𝑠

𝑙
 

 
and becomes 
 
 

𝑄(𝑋, 𝑡) = ∑
𝑃0

2𝑅
𝑐𝑜𝑠2 (

𝜋(𝑋 − 𝑉𝑡 − (2𝑅 + 𝑆)𝑑)

2𝑟
)

𝐷−1

𝑑=0

∗ 𝐻(𝑅2 −  (𝑋 − 𝑉𝑡 − (2𝑅 + 𝑆)𝑑)2)𝑒𝑖𝛺𝑡 

(5) 

 
By substituting Eq.(5) to the r.h.s of the Eq. (3) one can obtain 

 
  d4𝜙(𝑋)

d𝑋4
+ (

𝜆

𝛾
− 𝐾1)

d2𝜙(𝑋)

d𝑥2
+ (𝐾0 − 𝜆)𝜙(𝑋)

= ∑
𝑃0

2𝑅
𝑐𝑜𝑠2 (

𝜋(𝑋 − 𝑉𝑡 − (2𝑅 + 𝑆)𝑑)

2𝑅
)

𝐷−1

𝑑=0

∗ 𝐻(𝑅2 −  (𝑋 − 𝑉𝑡 − (2𝑅 + 𝑆)𝑑)2)𝑒𝑖𝛺𝑡 

(6) 

 
2.3 Application of the AMDM 
The AMDM can now be applied to Eq. (6) as follows  
 

 
𝜙(𝑋) = Φ(𝑋) + 𝐺−1 {(𝐾1 −

𝜆

𝛾
)

d2𝜙(𝑋)

d𝑥2
− (𝐾0 − 𝜆)𝜙(𝑋)

+ ∑
𝑃0

2𝑅
𝑐𝑜𝑠2 (

𝜋(𝑋 − 𝑉𝑡 − (2𝑅 + 𝑆)𝑑)

2𝑅
)

𝐷−1

𝑑=0

∗ 𝐻(𝑅2 −  (𝑋 − 𝑉𝑡 − (2𝑅 + 𝑆)𝑑)2)} 

(7) 



 
By substituting 𝜙(𝑋) = ∑ 𝐶𝑚𝑋𝑚,∞

𝑚=0  and its second derivative into Eq. (7) one can 
obtain 
 

𝜙(𝑋) = Φ(𝑋) + 𝐺−1 {(𝐾1 −
𝜆

𝛾
) ∑ (𝑚 + 1)(𝑚 + 2)𝐶𝑚+2𝑋𝑚

∞

𝑚=0

− (𝐾0 − 𝜆) ∑ 𝐶𝑚𝑋𝑚

∞

𝑚=0

+ ∑
𝑃0

2𝑅
𝑐𝑜𝑠2 (

𝜋(𝑋 − 𝑉𝑡 − (2𝑅 + 𝑆)𝑑)

2𝑅
) 𝐻(𝑅2

𝐷−1

𝑑=0

− (𝑋 − 𝑉𝑡 − (2𝑅 + 𝑆)𝑑)2)} 

(8) 

 
From this a recurrence relation of 𝐶𝑚 can be obtained as follows 
 

 
𝐶0 = 𝜙(0), 𝐶1 = 𝜙′(0), 𝐶2 =

𝜙′′(0)

2
,     𝐶3 =

𝜙′′′(0)

6
 (9) 

for 𝑚 ≥ 4 as following 
 
 

𝐶𝑚 =
1

𝑚(𝑚 − 1)(𝑚 − 2)(𝑚 − 3)
∑ [(𝐾1 −

𝜆

𝛾
) (𝑗 + 1)(𝑗 + 2)𝐶𝑗+2

𝑚−4

𝑗=0

− (𝐾0 − 𝜆)𝐶𝑗] 

(10) 

The unknown coefficients 𝐶𝑚(𝑚 = 0,1,2,3)  are found using the boundary 

conditions of each section of the beam and the continuity conditions between sections. 
 

2.4 Boundary conditions 
Boundary conditions for the clamped-free case at 𝑋 = 0 and 𝑋 = 1 are 
 

 
𝜙(0) =

d𝜙(0)

d𝑋
= 0,          

d3𝜙(1)

d𝑋3
= 0 (11) 

 
They can be described in terms of rotational and translational flexible ends to make 

it convenient to use with the AMDM as shown on Fig. 2. 
 

 
 

Fig. 2 Boundary condition described by rotational and translational flexible ends. 



The boundary conditions are turned into dimensionless form as 
 
 d2𝜙(0)

d𝑋2
− 𝜅𝐿0

d𝜙(0)

d𝑋
= 0,   

d3𝜙(0)

d𝑋3
+ 𝜅𝐿1𝜙(0) = 0 

(12)   
 d2𝜙(1)

d𝑋2
+ 𝜅𝑅0

d𝜙(1)

d𝑋
= 0,   

d3𝜙(1)

d𝑋3
− 𝜅𝑅1𝜙(1) = 0 

 
where the coefficients are made non-dimensional using 
 

𝜅𝐿1 =
𝑘𝐿1𝑙3

𝐸𝐼
,   𝜅𝑅1 =

𝑘𝑅1𝑙3

𝐸𝐼
,   𝜅𝐿0 =

𝑘𝐿0𝑙

𝐸𝐼
,   𝜅𝑅0 =

𝑘𝑅0𝑙

𝐸𝐼
 

 
2.5 Solution algorithm   

Terms 𝜙[1](𝑋) = 𝐶0 , 𝜙[2](𝑋) = 𝜙[1](𝑋) + 𝐶1𝑋,  𝜙[3](𝑋) = 𝜙[2](𝑋) + 𝐶2𝑋2 , 𝜙[4](𝑋) =
𝜙3(𝑋) + 𝐶3𝑋3 serve as approximate solutions with increasing accuracy as 𝑛 → ∞ (Adair 
2019). The four coefficients 𝐶𝑚(𝑚 = 0,1,2,3)  in Eq. (9) depend on the boundary 

conditions of Eq. (12). The two coefficients 𝐶0 and 𝐶1 are chosen as arbitrary constants, 
and the other two coefficients 𝐶2 and 𝐶3 are expressed as functions of 𝐶0 and 𝐶1. Thus 
from Eq. (12) and Eq. (9) one can obtain  

 
 𝐶2 =

𝜅𝐿0

2
𝐶1,   𝐶3 = −

𝜅𝑅𝑜

6
𝐶0 (13) 

 
Thus the initial term Φ(𝑋) can be represented as a function of 𝐶0 and 𝐶1 and from 

the Eq. (3.19) the coefficients 𝐶𝑚(𝑚 ≥ 4) are functions of 𝐶0, 𝐶1 and 𝜆. By substituting 

𝜙[𝑛](𝑋) into the boundary conditions of Eq. (12) when 𝑋 = 1, following is obtained  
 

 𝑓𝑟0
[𝑛](𝜆)𝐶0 + 𝑓𝑟1

[𝑛](𝜆)𝐶1 = 0,   𝑟 = 1,2 (14) 

 
For non-trivial solutions, 𝐶0 and 𝐶1the frequency equation is expressed as 
 

 
|
𝑓10

[𝑛]
(𝜆) 𝑓11

[𝑛]
(𝜆)

𝑓20
[𝑛]

(𝜆) 𝑓21
[𝑛]

(𝜆)
| = 0 (15) 

 

The 𝑖th estimated eigenvalue 𝜆(𝑖)
[𝑛]

 corresponding to 𝑚 is obtained from Eq. (15), i.e., 

the 𝑖th estimated dimensionless natural frequency Ω𝑛(𝑖)
[𝑛]

= √𝜆
(𝑖)

[𝑛]
 is also obtained and 𝑛 

is determined by 
 |Ω𝑛(𝑖)

[𝑛]
− Ω𝑛(𝑖)

[𝑛−1]
≤ 𝜀| (16) 

 

where Ω𝑛(𝑖)
[𝑛−1]

 is the 𝑖th estimated dimensionless natural frequency corresponding to 𝑛 −

1, and 𝜀 is a pre-set sufficiently small value. 



Vibration response of the Euler-Bernoulli beam resting on the Pasternak foundation 
is now calculated using clamped-free (cantilever) boundary conditions where the spring 
constants becoming, 𝜅𝐿0 → ∞, 𝜅𝑅0 → 0, 𝜅𝐿1 → ∞, 𝜅𝑅1 → 0 as per Eqs. (11) and (12). 

The algebraic equations arising from boundary conditions in Eq. (11) and (12) with 
𝑋 = 0 and 𝑋 = 1  are  

 
 

∑ (𝑚 + 1)(𝑚 + 2)𝐶𝑚+2 + 𝜅𝑅0 ∑ (𝑚 + 1)𝐶𝑚+1 =

𝑛−2

𝑚=0

𝑛−3

𝑚=0

𝑓11
[𝑛](𝜆)𝐶0 + 𝑓12

[𝑛}(𝜆)𝐶1 = 0 

(17) 
 

∑ (𝑚 + 1)(𝑚 + 2)(𝑚 + 3)𝐶𝑚+3

𝑛−4

𝑚=0

− 𝜅𝑅1 ∑ 𝐶𝑚

𝑛−1

𝑚=0

= 𝑓21
[𝑛](𝜆)𝐶0 + 𝑓22

[𝑛](𝜆)𝐶1 = 0 

 
Eq. (10) will be used to define the coefficients for solving the Eq. (17).  
 
3. RESULTS 

 
The numerical results of frequencies of first three modes of a beam vibration are 

provided in Table 1 for different shear parameters, 𝐾1  while keeping stiffness, 𝐾0 
constant. The effect of the stiffness parameter, 𝐾0 on beam vibration frequency, with 
constant shear parameter was also analysed and the numerical results are provided in 
Table 2. From the last columns for large parameter in Table 1 and Table 2 in can be 
seen that the frequency is influenced the most in Table 1. From this, it can be 
concluded that the shear parameter has greater effect for the beam vibration frequency 
compared to the stiffness parameter.  

 
Table 1 Frequencies of beam on an elastic foundation for different 𝐾1 with  𝐾0 = 1 
 

Frequencies 𝐾1 = 0 𝐾1 = 5 𝐾1 = 50 𝐾1 = 1000 

Ω𝑛(1) 2.3721 3.1009 5.3574 27.942 

Ω𝑛(2) 5.58 5.9769 8.8382 31.061 

Ω𝑛(3) 7.7385 8.0402 10.388 35.199 

 
Table 2 Frequencies of beam on an elastic foundation for different 𝐾0 with  𝐾1 = 1 
 

Frequencies 𝐾0 = 0 𝐾0 = 5 𝐾0 = 50 𝐾0 = 1000 

Ω𝑛(1) 2.4954 2.6859 3.7419 5.978 

Ω𝑛(2) 5.654 5.6921 6.1553 7.9019 

Ω𝑛(3) 7.7966 7.8125 8.0045   11.315 

 
Fig. 3 and Fig. 4 show how the frequency for each phase is affected by different 

foundation parameters under moving loading. Previously mentioned greater effect of 
shear over stiffness can also be observed here. Even though comparison was 
performed only until 𝐾0 = 15  and 𝐾1 = 15 , it can be seen that the overall ratio of 
frequencies of any mode in Fig. 3, where shear parameter is varied keeping stiffness 



constant, is greater than in Fig. 4, where the stiffness is varied keeping the shear 
constant. Moreover, it can be noticed from both figures that the first mode is the most 
affected by any parameter than other modes.  

 
 

 
 

Fig. 3 The effect of the shear 
parameter 𝐾1 to frequencies, at constant 

stiffness 𝐾0 = 1. 
 

 
 

Fig. 4 The effect of the stiffness 
parameter 𝐾0 to frequencies, at constant 

shear 𝐾1 = 1. 

 
 

Fig. 5 The effects on the vertical 
deflection of the beam’s midpoint by a 

point force when  𝐾0 = 0. 

 
 

Fig. 6 The effects on the vertical 
deflection of the beam’s midpoint by a 

point force for different 𝐾1 
 
The effect of a moving loading at the midpoint of the beam is investigated. Initially 

the foundation parameters were taken as 𝐾0 = 0 and 𝐾1 = 0, and the deflection at the 

midpoint is calculated for time, 𝑡. Time is given by 𝑡 = 𝑙/2𝑣, where 𝑙 is the length of the 
beam, 𝑣 is the velocity of the moving loading. Fig. 5 illustrates the deflection when 𝑣 =
50𝑚/𝑠 for different iterations.  

The effect of the foundation shear parameter on the deflection of the beam at the 
middle is also analyzed. The results are presented in Fig. 6. From Fig. 6 it can be seen 
that an increase in the shear parameter decreases the amplitude of deflection. It can be 
concluded that the shear parameter has a significant effect on preventing the deflection 
of the beam under the moving load.  
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4. CONCLUSIONS 
 

An analytical solution method, namely the Adomian Modified Decomposition 
method was developed that gives efficient, fast and accurate results for the fourth-order 
nonlinear differential equation which describes the transverse vibrations of an Euler-
Bernoulli beam resting on a two parameter foundation. The developed AMDM based 
solution algorithm determines the free and forced vibration frequencies of a beam and it 
is relatively easy to apply boundary conditions. Quick convergences with accurate 
results were observed, especially for the first vibration mode. Analysis shows that the 
foundation shear parameter has a greater effect on vibration frequency of a beam 
compared to the stiffness parameter. Moreover, investigation of the beam under 
harmonic moving loading showed that the shear parameter had a significant effect on 
decreasing the deflection of the beam under moving loading. 
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