Automated Structural Damage Detection for a Simple Beam Structure using Deep Convolutional LSTM

*Jong-Woong Park¹⁾ and Jongbin Won²⁾

^{1), 2)} School of Civil and Environmental Engineering, Urban Design and Studies, Chung-Ang University, Seoul 06974, Korea ¹⁾ jongwoong@cau.ac.kr

ABSTRACT

Structural damage detection is still a challenging problem due to the difficulty of extracting damage features from structures. This study presents damage detection approach to automatically identify damage locations from a set of acceleration responses using deep convolutional LSTM. The proposed method compares the frequency-domain responses from undamaged and damaged states, and output damage location of quantity. The proposed method has been numerically and experimentally validated on a simple beam structures to investigate the accuracy and robustness for damage identification, taking into consideration of uncertainties in the model information.

REFERENCES

Xingjian, S., et al. (2015) "Convolutional LSTM network: A machine learning approach for precipitation nowcasting", in Advances in neural information processing systems.Karim, F., et al. (2019), "Multivariate LSTM-FCNs for time series classification".

¹⁾ Assistant Professor

²⁾ Graduate Student (MS student)