Confined flow around a square prism

*Ramnarayan Mondal¹⁾, Md. Mahbub Alam²⁾ and C. M. Sewatkar³⁾

 ^{1), 2)} Institute for Turbulence-Noise-Vibration Interaction and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
³⁾ Department of Mechanical Engineering, College of Engineering, Pune, India
^{#)} <u>alamm28@yahoo.com;</u> alam@hit.edu.cn

ABSTRACT

A numerical investigation is conducted on the incompressible fluid flow around a square prism symmetrically placed in a rectangular channel. The effect of gap spacing ratio g/d (= 0.4 – 12.0) is studied on Strouhal number (*St*), time mean drag coefficients (\overline{C}_D), fluctuating lift coefficients (C'_L) and flow structures where g is the spacing between the prism and channel wall and d is the height of the prism. For all simulations, Reynolds number (*Re*) is fixed at 100. It is observed that the *St* and \overline{C}_D both increase with decreasing g/d. On the other hand, with increasing g/d, the C'_L decreases for 0.4 <g/d < 1.0, increases for 1.0 $\leq g/d$ < 2.0 and again decreases for 2.0 < $g/d \leq$ 12.0. Three distinct vortex shedding regimes are observed (a) wall-dominated vortex street ($0.4 \leq g/d < 1.0$), (b) reverse Karman vortex street ($1.0 \leq g/d < 3.5$), and (c) Karman vortex street ($3.5 \leq g/d \leq 12$).

Fig. 1 Vorticity contours around a square prism (a) wall-dominated vortex street, (b) reverse Karman vortex street and (c) Karman vortex street.

¹⁾ Researcher, PhD

²⁾ Professor

³⁾ Professor