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Abstract. This study presents algorithms for determining the fuzzy critical loads of planar steel frame structures with
fixity factors of beam – column and column – base connections are modeled as triangular fuzzy numbers. The finite element
method with linear elastic semi-rigid connection and Response Surface Method (RSM) in mathematical statistic are applied
for problems with symmetric triangular fuzzy numbers. The α – level optimization using the Differential Evolution (DE) 
involving integrated finite element modeling is proposed to apply for problems with any triangular fuzzy numbers. The
advantage of the proposed methodologies is demonstrated through some example problems relating to for the twenty – story,
four – bay planar steel frames.
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1. Introduction

When we analyze the stability of semi-rigid connection steel frame structures, the fixity factor of
connection has a significant influence on the buckling resistance capacity of a steel frame. In practice,
however, many parameters like worker skill, quality of welds, properties of material and type of the
connecting elements affect the behavior of a connection, and this fixity factor is difficult to determine
exactly. Therefore, in a practical analysis of structures, a systematic approach is needed to include the
uncertainty in the joints behavior and the fixity factor of a connection modeled as a fuzzy number is
reasonable (Ali Keyhani et al, 2012).

In recent years, the static analysis for planar steel frame structure with the fuzzy connection has been
reported (Ali Keyhani et al, 2012). However, the buckling analysis for determining the fuzzy critical load
by using exact approach has been limited. For the rigid frame, Tuan et al (2015) presented an approach
by using Response Surface Method (RSM) for fuzzy free vibration analysis of linear elastic structure in
which response surfaces (surrogate functions) in terms of complete quadratic polynomials are presented
for model quantities and all fuzzy variables are standardized. The usage of the RSM shows that this
approach has effectiveness for the complex structural problems with a large number of fuzzy variables.
However, the RSM is only suitable for problems which all fuzzy variables are modeled as symmetric
triangular fuzzy numbers. For the problems with non-symmetric triangular fuzzy numbers, the fuzzy
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structural analysis must use another approach. Anh et al (2014) presented an optimization algorithm for
fuzzy analysis by combining the Differential Evolution (DE) with the α – level optimization. DE is a 
global optimization technique, which combines the evolution strategy and the Monte Carlo simulation,
and is simple and easy to use.

In this paper, the fuzzy critical load of planar steel frame structure with fuzzy fixity factor is
determined by using two approaches for solutions. The first approach is based on the classical finite
element method in combination with the response surface method for fuzzy fixity factor input and
obtained fuzzy critical load output. This is implemented similarly to the approach which can be found
Nguyen Hung Tuan (2015), however, the finite element is extended with the linear elastic semi-rigid
connection which can be found Vu Quoc Anh (2002). The second approach is based on finite element
model by combining the α – level optimization with the Differential Evolution algorithm which is a 
population-based optimizer. The DE is similar to the genetic algorithm (GA), but it is simple, easy for
application and its global convergence and robustness are better than most other GAs (Storn et al, 1995
and Mezura-Montes, 2013). Two solution approaches are different and applied to problems with various
fuzzy inputs. In the first approach, the fuzzy fixity factor modeled as the non-symmetric triangular fuzzy
number has not considered yet. This is implemented in the second approach and that is the advantage of
DE. A comparison of the fuzzy critical loads between the RSM and the DE is presented by considering
the twenty floor, four bay planar steel frame structure subjected to concentrated loads at nodes, in which
the fixity factors are modeled as symmetric triangular fuzzy numbers. The obtained results are not
significantly different. Hence, the α – level optimization in combination with the Differential Evolution 
algorithm is applied to this analysis, in which considering the fuzzy fixity factors at the boundary
constrain are modeled as non-symmetric triangular fuzzy numbers. In addition, the determinant results of
the proposed algorithms are also compared with ones of the SAP2000 software. Moreover, the
computational efficiency and applicability of the DE optimization in the context of fuzzy critical load
analysis is demonstrated through on the example of that frame subjected to uniform loads uniformly
distributed on the beams.

2. Finite element with linear semi-rigid connection

The critical load is determined by solving the Eigenvalue equation
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where [K] is the assembled stiffness matrix of the frame and [KG] is the assembled geometric stiffness
matrix of the frame.

The frame element with linear semi – rigid connection as shown in Fig. 1, in which E - the elastic
modulus, A – the section area, I – the inertia moment, and ki – rotation resistance stiffnesses at
connections (i = 1,2).

Fig. 1 Frame element with linear semi-rigid connection

The element stiffness matrix - [Kel] and the element geometric stiffness matrix - [KG
el] of the frame

are given as following (Vu Quoc Anh, 2002)
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