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ABSTRACT 
 

     This paper presents a numerical approach based on the power series method for 
linear stability analysis of non-prismatic Timoshenko beams subjected to a constant 
axial load tangential to the beam axis. The governing system of equilibrium equations 
are derived from principle of stationary total potential energy. For this purpose, the total 
potential energy is derived from the elastic strain energy and the potential energy due 
to effects of the initial stresses resultants. Then the equilibrium equations lead to a 
unique homogeneous second-order differential equation in term of bending rotation, 
since in the presence of flexural and shear rigidities of cross-section of the considered 
Timoshenko beam, the obtained system of stability equations are coupled and 
simultaneous. In the case of non-uniform members, all stiffness coefficients are 
variable along the beam’s length. The power series approximation is then adopted to 
ease the solution of the differential equation with variable coefficient. Finally, the critical 
buckling loads are determined by solving the eigenvalue problem of the obtained 
algebraic system. In order to illustrate the correctness and performance of proposed 
numerical method, one comprehensive example of Timoshenko beam with non-uniform 
section is presented. The obtained results are compared with available numerical or 
analytical solutions. The accuracy of the method is then remarked.  
 
KEYWORDS: Non-prismatic Timoshenko beam; linear stability analysis; Power series 
method; Eigenvalue problem  
 
 
1. INTRODUCTION 
 

     Due to improvements in fabrication process, efficiency and reduction in weight and 
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cost, members with variable cross-section are extensively spread in steel structures as 
beams and columns. Researchers usually use Euler-Bernoulli beam theory for investing the 
beams with uniform or non-uniform cross-sections in which the influence of shear 
deformation is ignorable. They applied Timoshenko beam for static and dynamic analyses of 
elastic members such as towers, thick and ambulatory beams, in those the influences of 
shear deformation and rotary inertia are considerable and can’t be ignored in the calculation 
process. Among the first investigations on this topic, the most important one is the study 
of Irie (1980), which used the transfer matrix approach for the vibration and stability 
analyses of Timoshenko beams subjected to a tangential follower force. Esmailzadeh 
(2000) studied the free vibration and stability analyses of non-prismatic Timoshenko beams 
subjected to axial and tangential loads. The obtained fourth order differential equations with 
variable coefficients are then solved by using Frobenius method. In order to investigate the 
static, dynamic and buckling behaviors of partial interaction composite members, Xu 
(2007) adopted an analytical method to solve governing differential equation. The 
stability analysis of Euler-Bernoulli and Timoshenko beams were solved using finite 
element method by Wieckowski (2007). The exponential stability of non-uniform 
Timoshenko beam with one internal control was investigated by Soufyane (2009). The 
elastic behavior of Timoshenko beams resting on nonlinear compressional and frictional 
Winkler foundation was investigated by Al-Azzawi (2011) using finite difference method. In 
the current study, in order to calculate the critical buckling loads of non-prismatic 
Timoshenko beams, power series method is used to solve the governing stability 
equation of a non-uniform Timoshenko beam.  
 
 
2. EQUILIBRIUM EQUATIONS OF NON-PRISMATIC TIMOSHENKO BEAMS 
 
      A non-prismatic Timoshenko beam of Length L subjected to a constant axial load is 
considered in this study (Fig. 1). In the present work, it is assumed that the geometrical 
properties of beam cross-section vary arbitrary while the material is remained constant 
along member’s length. For stability analysis, the beam is related to a constant axial 
load tangential to the axis of member. Based on the Timoshenko beam theory, the 
longitudinal and transverse displacement components can be respectively expressed 
as: 

0( , , ) ( ) ( )                       , ( , , ) ( )U x y z u x z x W x y z w x                                     (1)  

 

 

Fig. 1 A non-uniform Timoshenko beam subjected to a constant axial load at its end 
 

     In which U denotes the axial displacement. The displacement components W and   
represent vertical displacements (in z direction) and the angle of rotation of the cross-
section due to bending. The equilibrium equations are derived from variation of total 



  

potential energy which is: 

 0 0lU U                                                                                         (2)  

  illustrates a virtual variation in the last formulation. 
lU  and 

0U  are the elastic strain 

energy and the potential energy due to effects of the initial stresses. Their relationships 
are developed as: 

 0 * 0 * 0 *

0
0

1
( ) ;  

2

L L L

L xx xx xy xy xz xz
L A

L

xx xx xy xy xz xz
A

U dAdx

U dAdx

     

     

  

  

 

 

                                                                           (3) 

In these formulations, L  and A  express the element length and the cross-section 

area, in order. In Eq. (3), l

ij
 
and *

ij
 
denote the linear and

 
the quadratic non-linear parts 

of strain, respectively. The Green’s strain tensor components which incorporate the 
large displacements effects are given by: 
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 where  i,j,k = x,y,z                                (4)  

Using relationships (1) & (4), the linear and the non-linear parts of strain components 
are: 
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In Eq. (3), 0

xx  and 0  signify initial normal stress and the mean value of the shear 

stress, in order. The general case of normal stress associated with constant axial force 
P is considered as: 
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For the particular case of buckling stability context where the beam is initially under 
axial load, one considers that the shear stresses equal zero. The material is elastic 
homogeneous and isotropic. Denoting by E and G the elastic constants, the stress 
components of the beam are: 

xx xy xz

l l l

xx xy xzσ Eε ,              τ Gγ ,             τ Gγ                                                                 (7) 

Substituting the strain-displacement relations defined in Eq. (5), initial stresses (6) 
and elastic stress (7) into Eq. (3), and integration over the cross-section in the context 
of principal axes, the total potential energy of an elastic Timoshenko beam with variable 
cross-section are derived as: 
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In the last expression, k is the shear correction factor. I  denotes the second 

moments of area. By variation on Eq. (8) with respect to 0 ,  u w  and  , the equilibrium 

equations are derived as: 

0( ) 0EAu                                                                                                                     (9) 



( ) ( ) 0EI kGA w                                                               (10) 
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The associated boundary conditions for Timoshenko beam are: 

0'

0 EAu                                            Or              0u                                         (12) 

0EI                                           Or              0                                      (13) 

( ) 0kGA w Pw                             Or              0w                                        (14) 

The equilibrium equations (10-11) are simultaneous differential equations due to the 
presence of displacement components (w and  ) while, the axial stability equation (Eq. 

(10)) is uncoupled to the mentioned ones. The axial equilibrium equation has no 
incidence on linear stability analysis of Timoshenko beam. The third equilibrium 
equation (12) by assuming that the boundary conditions in vertical direction can be 
transformed into: 
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Using the last expression and after some needed simplifications, the second 
equilibrium equation (10) is then uncoupled to the transverse displacement (w), the 
following differential equation is then derived only in term of the angle of rotation ( ): 

( )( ) ( ( ) ) 0kGA EI P kGA EI                                                          (16) 

In the following, in order to solve obtained stability equation (16), the power series 
expansions is applied. Referring to this method, all geometric properties and the 
displacement component of a beam are developed into power series form.  
 
 
3. NUMERIAC APPROACH  
 

In the case of non-prismatic beams, none of the geometric characteristics of the 
cross-section are constant. For this reason, all these terms are presented in power 
series form, as follows: 
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Where iI  and iA  are coefficients of power series at order i. In order to ease the 

solution of the stability equation, a dimensionless variable ( /x L  ) is introduced. 

Substituting Eq. (17) and the non-dimensional variable   into the stability Eq. (16) lead 

to the following equation: 
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The general solution of the cross-section rotation angle is also presented by the 
following infinite power series of the form: 
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Furthermore, introducing new variables: 
* * ,         i i

i i i iI I L A A L                                                                           (20) 

And substituting Eq. (19)-(20) into Eq. (18), the following equation is found: 

* *

1

0 0 0

2 * *

1

0 0 0 0

( ) ( ( )( ( 1) ))

( )( ) ( ( )( ( 1) )) 0

m i j

m i j

m i j

i j i j

i j i j

i j i j

d
kG A E I j a

d

d
P L kG A a E I j a

d

  


   


  



  

   



   



 
    

 

  

   

                                      (21) 

By multiplying the two series in each terms of equation (21), the following expression is 
obtained: 
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The following recurrence formula for the coefficient ( 2ma  ) are then obtained: 
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With the recurrence formula, the fundamental solution of Eq. (21) can be obtained 

unambiguously in terms of the four constants ( 0 1,a a ) which can be determined by 

imposing the natural boundary conditions. The solution of Eq. (18) can be expressed in 
the following form: 

     0 0 1 1a a                                                                                                     (24) 

Where ( 0 1)i  i ,   are the fundamental solutions of Eq. (16). Knowing that the first two 

coefficients ( 0 1,a a ) are functions of the displacements of degree of freedom (DOF). 

Then all the coefficients ( 2,3,4,..)ia i  are also functions of the displacements of DOF. 

The calculation procedure is done with the aid of MATLAB software. 
 
 
4. RESULTS AND DISCUSSIONS 
 

In order to investigate the accuracy and the efficiency of the power series method in 
stability analysis of non-uniform Timoshenko beam with arbitrary boundary conditions, 
a comprehensive example composed of two different parts is presented. Therefore, the 
linear buckling loads of Timoshenko beams with uniform and non-uniform cross-
sections are carried out in the presence of rectangular cross-section. In all presented 
numerical examples, the modulus of elasticity, Poisson’s ratio and the shear correction 



factor are assumed 200GPa , 0.3 and 5/6, in order. In the following equations, the 

geometric parameters at the left and right supports of the beam are indicated by the 
subscript 0 and 1, respectively. In order to simplify the solution procedure and the 
illustration of obtained results, some new non-dimensional parameters are adopted as: 
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In the following numerical cases, m is equal to 0.12. The aim of the first section is to 
define the required number of terms in power series expansions to obtain an 
acceptable accuracy on critical elastic buckling loads. Therefore, Table 1 gives the 
lowest value of elastic buckling loads of prismatic beams with different boundary 
conditions. Effect of the number of power series terms (n) considered in the proposed 
numerical technique on convergence is also displayed in Table 1. The obtained results 
by the presented technique have been compared with those obtained by the finite 
element solution based on combination of energy approach and basic displacement 
functions (BDFs) reported by Shahba (2011) and with the exact ones proposed by Wang 
(2004). 
 

Table 1: Critical load parameter ( cr ) comparison of power series method and other 

available results for beam 

Number of 
terms of power 

series 

 

Clamped-
Free 

Hinged-
Hinged 

cr  cr  

6 2.3499 - 

8 2.2886 7.3149 

10 2.2911 7.5720 

12 2.2910 7.5443 

14 2.2910 7.5460 

16 2.2910 7.5459 

18 2.2910 7.5459 

20 2.2910 7.5459 

Wang (2004) 2.2910 7.5459 

Shahba (2011) 2.2911 7.5472 

 
It should be noted that taking more than 14 terms of power series expansions for 

high accurate solutions involved in the stability analysis is not required.  
The second section deals with the stability analysis of two sets of non-prismatic 
Timoshenko beams subjected to a concentrated axial load tangential to the beam axis. 
In all considered beams, the geometrical properties of the left end section of the 
member are constant. In the first case, the width of beam’s section (b0) at the left 
support is made to diminish to (b1) at the other end with a linear variation, while its 
length is remained constant. In Case B, the length (h) and width (b) of considered 
rectangle are simultaneously allowed to vary linearly along the length with same 

tapering ratio 1 0 1 0/ /h h b b   . In this example, the tapering parameter can change 



  

from 0  (prismatic beam) to 0.2,0.4,0.6,0.8   (non-uniform ones). For both cases, 

the moment of inertia and the cross-section area can be represented in the following 
forms: 

Case A:        
3

0 01- ; 1-I I A A      and Case B:        
4 2

0 01- ; 1-I I A A      

(26)  
 

Table 2: Critical axial load parameter ( cr ) for different non-prismatic beams 

 
Tapering ratio   

Case A Case B 

Clamped-
Free 

Hinged-
Hinged 

Clamped-
Free 

Hinged-
Hinged 

cr  cr  cr  cr  

0 2.2910 7.5459 2.2910 7.5459 

0.2 1.8839 5.6742 1.7421 5.0354 

0.4 1.4653 3.9124 1.2034 2.9236 

0.6 1.0261 2.2826 0.6819 1.2818 

0.8 0.6572 1.2085 0.3900 0.6664 

 
 
CONCLUSIONS 
 
         In this paper, the stability analysis of non-uniform Timoshenko beams was studied 
using numerical method based on power series expansions. The results obtained using 
aforementioned method are in close agreement to other benchmark solutions available 
in the literature. In most cases, the buckling loads of non-uniform members can be 
determined with a very good accuracy, within a relative error, less than 1%., by 
considering 12 to 20 terms of power series.  
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