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ABSTRACT 
 
This article focuses on adopting the UKF state observer to hysteresis model 

parameter identification. Scaled UKF are reviewed, after that a modified Unscented 
Kalman filter (UKF) parameter identification method is proposed. In this method, the one 
point a step observation often used in UKF identification is replaced with several time 
points, which are chose randomly in ‘future’ observed values. The random sample 
largely decrease the calculation effort of the inverse of the observation covariance 
matrix, while obtain a more easy converge and robust estimation. At the end of this 
article, numerical simulation is presented by identify a complete brief Bouc-wen model 
parameters to show the effectiveness of this method. 

 
1. Introduction 
 

Since Kalman filter first applied by Stanley F. Schmidt in 1960s[1], its application has 

been extended to various fields, such as global navigation[2], target tracking[3], chemical 

process control[4], etc. It has been improved for different purposes, and adapted for fit 

different situations. For state estimate of nonlinear system, there are extended Kalman 

filter [5], unscented Kalman filter [6], cubature Kalman filter [7], Particle filter [5], etc.  

With its feasibility to more complicated nonlinearity relative to extended Kalman 
filter, lower cost of computation effort relative to particle filter, applicability to more 
probability distribution relative to cubature Kalman filter, unscented Kalman filter have 
witness plenty of applications and modifications recently. One of its important 
applications is parameter identification. 

In terms of parameter identification, mainly two forms are frequently used. 
One is dual identification.[8] This form identify states of dynamic system and 

parameters separately with two Kalman class filters interactive with each other, the first 
Kalman filter regards parameters as known, while the second one views parameters as 
states and the dynamic states of system as known.[9, 10]  

The other is joint identification.[8] This form retains the structure of UKF state 
observer, parameters are consider as state variables together with the dynamic states of 
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system.[11-13]  
In both of these two forms, states are calculated based on the last step estimates. 

As the states and parameters being unknown, only the structure of the system and the 
observations obtained in current step is available. Uniqueness of states and parameters 
cannot be ensured in the vicinity of current state, even though the generated 
observation estimation comply well with the observation. It often course fake identified 
parameter or instability of the Kalman filter. To fix this problem, Rodrigo Astorza left only 
parameters as the states of UKF. He acquired the current states of system by integrating 
from the zero time point with current estimated parameters. [14] As time series become 
longer, each sigma point require more compute time. Moreover, there is no precise 
system in nature, each system operate with phase noise, alone with accumulation of 
inaccurate time counting in sampling of signal acquisition system, error will increase.   

In this article, the form of joint identification was used with single step observation 
replaced by random samples of a section of observed ‘future’ observations. This method 
increased the uniqueness of the parameters and decreased the calculation effort 
simultaneously. The second section consists a review of the scaled UKF method and a 
introduction of the improved method. In the third section a numerical simulation is 
carried out to show effectiveness of this improved method, the last section will 
summarize the merits and defects discovered in the implement of this method.    

 
2. Classic UKF and the improved method 

 
2.1 Classic UKF 

UKF relies on unscented transform to propagate the mean and covariance of a 

random variable x  through a nonlinear transform y = g(x) . In this article, we present an 

improved version of UKF, called scaled UKF. It was first studied by Simon J. Julie. [15] 

Simon J. Julie formed 2L+1 points
iΧ , around the estimated mean point x , with 

corresponding weights i . These points are called sigma points. With these sigma points 

we can estimate the transformed mean y  and covariance
y

P . The sigma points are 

formed as follows: 
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(0,1]  is a scaling parameter, determines the spread of the 2L sigma points iΧ  



 

 

around the center point 
0

Χ , in this research, we set it as 0.01.   is a secondary 

scaling parameter which is usually set to 0, and   is used to incorporate prior 

knowledge of the distribution of x  (for Gaussian distributions, 2   is optimal) .  

calculates the square root of matrix, which is defined as
T

P P P .[16]  
i
returns the 

i th column of a matrix. ( ) ( ),m c  represent the weight coefficient when estimating mean 

and covariance.   

We get 2L points ( )g
i i

Y X , after the sigma points passed through the nonlinear 

transform. Then the mean and covariance after nonlinear transform can be estimated as 
2

( )

0

2
( )

0

( )( )

L
m

i i

i

L
c T

i i i

i











  



y

y Y

P Y y Y y

  

T  denotes the transposition of a matrix. For non-Gaussian variables, the accuracy 

of third and higher order moments determined by the choice of   and  . Details of 

the derivation and proof can be found in Simon J. Julie’s article. [15]     
After review of the unscented transform, let us consider the following 

single-degree-of-freedom (SDOF) general nonlinear continuous dynamic system in 
structure dynamics. This model is excited by ground acceleration. 

( ) -l gmx c x f x mx    

Divide m in both sides of this equation, we can get 

( ) gx cx g x x     

where 

/

( ) ( ) /

lc c m

g x f x m




  

In this equation, x  is the displacement relative to the ground, denotes derivative 

with respect to time, 
gx  is the ground acceleration, m is the mass of the SDOF system, 

lc  is the equivalent damping coefficient, ( )f x  is the nonlinear stiffness, which can 

either be elastic or hysteresis or both. 
In KF class identification methods, dynamic equations are written in state space 

form. For joint identification problem (joint identification of states and parameters), the 
state space equation can be written as follows 

( )
s

g

x x

x x cx g x
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Where θ  stands for parameters of the system, sw  represents system noise, 

which can arise from inaccurate modeling, or noise induced by sensors when measuring 

ground excitation, etc. θω denotes the parameter uncertainty vector, which can also be 

used for identification strategy, called fake noise.[16] 
In this article, we chose displacement x  as the observed variable. Thus, for one 



 

 

point observation, the observation function is [1 0 0] y x v . v  indicates the additive 

observation noise. x  represents the augmented vector consist states and parameters. 
Obviously, the nonlinear transform appear only in the state update process.  

The state space representation can be abbreviate as follows. 

1 ( )k kF  
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w  is the augmented vector of system noise. 

The procedure of the scaled UKF is summarized in Table 1. 
 

Table 1 procedure of the scaled UKF 
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The measurement update process 
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2.2 Improved method 

In this method, an sL  length section of observation is used as the observation of 

UKF. It is well known that, unlike linear system, the response of nonlinear system can 
relate to energy of the input and even response history. This design will help us getting 
more characteristic of current system to improve the local uniqueness of parameters, at 
the same time decrease the influence of noise. 

This improvement of UKF is similar with an on-line unscented Kalman smoother 
(UKS)[16]. Kalman Smoother is designed for linear system. It use both history and ‘future’ 
observation with positive and negative oriented Kalman process to estimate states of 
current time point. Regarding nonlinear system, UKS requires other calculation methods 
to validate backward Kalman process, such as a neural network model.[8] 
Different from the UKS, the improved method utilizes the ‘future’ observations simply as 
the observation in current estimate. The so called ‘current’ is not the newest observed 
time point. The newest observed time point is the last point of the ‘future’ observations. 
The current time point is right after the selected section of ‘future’ observations. The 
observation estimation in UKF is computed with current first updated states and current 
estimated parameters. The relationship of these points is illustrated in Figure 1. 
 

 
Figure 1 illustration of selected section of observations, current time points marked with , newest time 

point is marked with , several solid lines with different color is the observation estimation generated by sigma 
points, * is the intact observation calculated by numerical integration  

 
Obviously, the longer the series is, the more stable but the less local the parameter 

we can get. And if we use all the series points, the computation effort in integration in 

observation estimate and matrix inverse in xyP  calculation will increase explosively with 

the growth of sL . To solve this problem, we use 1M    random samples of the chosen 

series together with the point of current time as the observation of UKF. As is proved by 
the numerical simulation, as long as the identified parameter converges, the random 
method converges.  

The improved method is summarized in Table 2 
 



 

 

Table 2 the changed procedure in the improved method 

Most of the method is the same as table 1, the only change is the 7th step in 
table 1:  
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Where 1 ( )sL r
F  returns 1sL r  times of ( )F  nonlinear transform 

(integration), ( )ceil  returns the larger nearest integer  

 
Why not choose a fix position in the time series?  

As the time history of displacement is continuous, observations in fix position of the 
time series possess the possibility of losing representativeness of the parameters for a 
while (a certain length of interval), as is shown by Figure 2, especially when periodic 
excitation and evenly distributed fix position is used. During this period, the parameter 
estimation can possibly lost its way to a wrong position that could never come back in 
severe nonlinear state space. However, method of random chosen position does not 
suffer this problem, the position change once a time, which makes a few wrongly 
estimated step insignificant. 

 
Figure 2 one situation of fix position lose representativeness 

 

The choice of sL  and M  

The length sL  should not be too small, a short series may not exhibit enough the 

characteristics of the system, nor should it be too large, a long series may submerge the 
local features of the system. A length that can cover a little longer than a quarter of 
average period of the response is recommended. If the parameters are known to be 

constant, a larger sL  including few periods is recommended to increase accuracy and 

robustness of the estimation.  



 

 

Regarding the choice of M, numerical experiments show that, as small as M=2, 
which mean a single random point, can offer certain support for parameters to converge 
to the true value. Users could balance between computation effort and converge rate.  

 
3. Numerical example 
 

In this section, we use a brief Bouc-wen model [17] as the objective of identification. 
This kind of model was studied in many articles.[13, 18, 19] In these articles, the Bouc-Wen 
model was often incomplete, that the linear elastic term was often omitted, or the severe 
nonlinear parameter n was assumed known. The first kind of abbreviation might 
because that the linear stiffness term and nonlinear stiffness term cannot easily be 
distinguish by one point observation. The reason of the second kind of abbreviation 
might be the severe nonlinearity brought by parameter n. Under such severe nonlinear 
state space, the UKF with one point observation could not easily find the right way to the 

true parameters. The improved method solved this problem，at the same time, obtained 

good convergence of either the states and the parameters of the system.  
The target nonlinear system was 
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The state space representation of the dynamic system is 
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The excitation was a composition of 4 sinusoidal with frequency 0.4 Hz、1Hz、1.5 

Hz、1.8 Hz and amplitude 3、5、3、3 respectively. The excitation was designed to fully 

stimulate the characteristic of this hysteretic system. The sample rate was 100Hz. The 
integration method was the explicit RK4. The true value of the parameters were

0.6, 40, 20, 3, 0.6, 2zc k k n       . The initial value of the improved UKF were 



 

 

arbitrarily chose, which was set as 0.2, 30, 20, 5, 0.3, 3zc k k n       . 

The identified parameters by intact signal (with no noise contaminated) are shown in 

Figure 3, the estimated states are illustrated in Figure 4. sL and M were set as 50 and 8 

respectively. From Figure 4~Figure 10 contaminated signal with signal to noise ratio 

(SNR) from 50Db to 35Db were used. sL and M were set as100 and 16 respectively. 

 

 
Figure 3 identification results of parameter using intact signal (the right dashed line stands for the true value of 

parameter, the blue solid line stands for the identified value, the same line style is used in Fig. 4,6,8)  

 



 

 

 

 
Figure 4 identification results of states using intact signal(the right ‘+’ mark stands for the identified states, 

the blue solid line stands for the true value, the same mark is used in Fig. 5,7,9) 

 
 

 
Figure 5 identification results of parameter using SNR 50db signal 



 

 

 
Figure 6 identification results of states using SNR 50db signal 

 
 

 
Figure 7 identification results of parameter using SNR 40db signal 

 

 



 

 

 
Figure 8 identification results of states using SNR 40db signal 

 
 

 
Figure 9 identification results of parameter using SNR 35db signal 



 

 

 
Figure 10 identification results of states using SNR 35db signal 

 
As it is shown in Figure 3, parameters converge quickly within 5 seconds. When 

signal is little contaminated, parameters is well identified in Figure 5. As the noise level 
increase, the estimation of parameters become worse. However the parameters 
obtained by this method can still oscillate tightly around the true value.   

 
4. Conclusion 
 

The improved UKF method successfully identified the parameters and states form 
the contaminated observations, which shows the effectiveness of this method in system 
identification against complicated model and noise.  

However, this method is not a real on-line identification method, the time delay 
depends on the chosen length of the observation. This problem will be studied in 
subsequent works. The application in real environment is another problem to solve.   
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