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ABSTRACT

Model updating aims at making inference on the structural model parameters
(e.g., stiffness, mass) based on measured structural response. Based on vibration data,
two-stage approach is commonly adopted, i.e., first identify the modal parameters
including natural frequencies, mode shapes, and then update the structural parameters
utilizing this information by building a finite element model. Identification uncertainty in
Stage I is usually not accounted for in traditional methods but this becomes critical for
output-only measurement. This paper presents a novel two stages Bayesian system
identification method by using the data collected under ambient condition. In Stage I, a
Fast Bayesian FFT method is conducted to obtain the most probable value (MPV) of
modal parameters and the associated posterior uncertainty. In Stage II, both the MPV
and the posterior uncertainty obtained are formulated into the updating process to
identify the model parameters. In this method, heuristics that are commonly applied in
formulating the likelihood function in the traditional methods are not involved. The
proposed method is illustrated by experimental data.

1. INTRODUCTION

System identification has attracted increasing attention to make inference about
the parameters of a mathematical model on the basis of observed vibration data of real
structures (Yuen et al. 2006; Lam et al. 2014; Yang et al. 2015). The Bayesian
approach provides a fundamental means for system identification, where uncertainties
due to the lack of information in the context of probability logic can be resolved (Au et al.
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2013). The parameters are viewed as uncertain variables and the identification results
are cast in terms of their probability distribution after incorporating information from the
observed data. This paper develops a novel two stages Bayesian system identification
method by using vibration data collected under ambient condition. In Stage I, modal
identification is performed by a recently developed Fast Bayesian FFT method to obtain
the most probable value (MPV) of modal parameters and the associated posterior
uncertainty (Au 2011, Zhang and Au 2013, Au 2012a,b). In Stage II, the MPV and the
posterior uncertainty of modal parameters obtained in Stage I are both incorporated
into the updating process to identify the model parameters, where heuristics commonly
applied in formulating the likelihood function are not involved. Experimental data of a
steel frame are used to investigate its applications. For the detail of this paper, please
refer to Zhang and Au (2016).

2. STAGE I-BAYESIAN MODAL IDENTIFICATION

In Stage I, acceleration data under ambient condition is first collected. To analyze
the measured data, Bayesian method is employed to perform modal identification. The
basic idea is as follows. The real and imagery part of the FFT of measured data is
proved to follow Gaussian distribution. According to Bayes’ Theorem, the posterior
probability density function (PDF) of modal parameters given the data is proportional to
the likelihood function. The likelihood function can be constructed by using the
properties of the FFT data. Theoretically, the modal parameters can be determined by
maximizing the posterior PDF. However, if performing the optimization directly, some
computational difficulties may exist in the process of optimization, for example the ill-
conditioned problem and the problem of the number of modal parameters to be
optimized increasing with the measured degrees of freedom (DOFs). To solve these
problems and make this method well applied in practice, the cases for well-separated
modes and general multiple modes are considered separately. Please refer to Au
(2011), Zhang and Au (2013) and Au (2012a,b) for details. In this method, the MPV of
modal parameters and the associated posterior uncertainty can be obtained directly.
This makes it possible to perform model updating in Stage II by incorporating the MPV
and the uncertainty information.

3. STAGE II-MODEL UPDATING

In Stage II the structural model parameters θ will be identified by using the
modal parameters obtained in Stage I. In this paper it is assumed that θ can
characterize the modal parameters ϖ (including natural frequencies and mode
shapes) only through the stiffness matrix K and mass matrix M .
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is the negative log-likelihood function (NLLF), which can transfer the maximum problem
to the minimizing problem. The form of )(II θL resembles some measure-of-fit function

between the MPV ϖ̂ and its model counterpart )(~ θϖ . The quadratic nature of the

discrepancy ]ˆ)(~[ )()( rr ϖϖ −θ stems from the Gaussian nature of the posterior

distribution of modal parameters in the first stage.
Based on Eq. (2), the model parameters can be obtained directly by minimizing

the NLLF if it is globally identifiable. The posterior uncertainty of model parameters can
also be evaluated by the finite difference method. For the details of this method, please
refer to Zhang and Au (2016). Note that the case considered here reflects that the
natural frequencies and mode shapes in Stage I are directly related to the structural
model parameters with structural modeling error not considered. In the general theory
developed by the same authors presents a fundamental means for taking into account
the structural modelling error (Au and Zhang 2016). This modeling is directly related to
the fidelity of the structural model under question and will be investigated in the future
work.

4. APPLICATION IN EXPERIMENTAL DATA

A three-storied shear frame model situated in the structural heavy laboratory at
City University of Hong Kong is used to illustrate the proposed method. The dimension
information of this structure is known. Assuming an initial elastic modulus of

211 /1055.1 mN× , the interstory stiffness along the weak direction is 3.07 N/mm, 10.41
N/mm and 11.33 N/mm for 1st to 3rd floor, respectively and interstory stiffness along
strong direction is 76.69 N/mm, 260.18 N/mm and 283.34 N/mm for 1st to 3rd floor,
respectively.

4.1 Stage I-Modal identification

At the four corners of each floor, bi-axial sensors were instrumented to measure
the structure response along the translational directions, with 24 measured degrees of
freedom in all the three floors. Ten minutes data were measured acquired with a
sampling rate of 2048Hz. The modal identification results are shown in
Table 1. The Mode shape is ignored here. Nine modes were identified including three
translational modes in X direction (denoted by TX), three translational modes in Y
direction (denoted by TY) and three torsional modes (denoted by R). The natural



frequencies ranged from 0.81 Hz to 45.86 Hz. The damping ratios are small and they
are all less than 0.5%. The COVs (Coefficient of Variation=Standard derivation / MPV)
of natural frequency are quite small in the order of magnitude of less than 0.1%. This
may be attributed to the higher signal to noise ratio during the measurement. The COV
of damping ratio is much larger than that of natural frequency and it is obviously
observed that the COV tends to decrease with the increase of mode numbers.

Table 1: Identified modal parameters

Mode Nature
Frequency Damping ratio

MPV
(Hz)

COV
(%)

MPV
(%)

COV
(%)

1st TX1 0.81 0.09 0.3 39

2nd TX2 3.52 0.03 0.1 26
3rd TY1 4.82 0.02 0.1 30
4th TX3 5.90 0.02 0.1 21
5th R1 7.11 0.02 0.2 16
6th TY2 17.66 0.01 0.1 11
7th R2 26.37 0.02 0.3 6
8th TY3 31.49 0.01 0.1 11
9th R3 45.86 0.01 0.1 7

4.2 Stage II-Structural model identification

In this stage, the mass properties are assumed to be known, and so ignore the
mass of the columns. Thus only the stiffness of the columns is unknown and will be
identified. Since the dimensions of the four columns in each floor are similar, the lateral
stiffness of the four columns in each story is assumed to be identical and they are equal
to a quarter of the total interstory stiffness. For the i -th story ( 3,2,1=i ), the interstory

stiffness along the x and y directions are parameterized by
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where xik ' and yik ' are the nominal value of interstory stiffness along the x and y

directions, respectively; and
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denotes one set of dimensionless structural model parameters to be identified.
All the data collected from measured DOFs are used for the first stage modal

identification and second stage model updating. Table 2 shows the identification results
for the MPV of structural model parameters and the associated posterior uncertainty in
Stage II. The MPVs of model parameters are generally close to 1 with a small posterior



uncertainty except for 1xθ . This shows that the actual stiffness properties are similar to

the calculated ones on the basis of the available nominal information. The abnormally

low value of 1xθ may be because of the reduction in stiffness of this floor due to a hole

existing in each column. This has been ignored in the calculation of the nominal
stiffness. The posterior COV of the stiffness parameters are generally small. This may
be due to the small posterior uncertainty of the modal parameters obtained in the first
stage.

Table 2: Identified stiffness parameters (Stage II)

Story MPV (COV) MPV (COV)

1st 0.700 (0.21%) 1.015 (0.03%)
2nd 1.011 (0.08%) 1.183 (0.06%)
3rd 1.078 (0.07%) 1.118 (0.06%)

CONCLUSIONS

This paper presents a two-stage Bayesian system identification method. This method
can incorporate the information of both the MPV of modal parameters and the
associated posterior uncertainty. The accuracy of identified modal parameters in the
Stage I can be considered in the Stage II model updating. This is quite meaningful for
the vibration data collected under ambient condition since it is output-only data and the
loading is random, leading to possibly large posterior uncertainty for the modal
parameters obtained. A steel frame structure in the laboratory is used to illustrate the
proposed method. By the investigation, it is shown that the proposed method can
identify reasonable model parameters and the associated posterior uncertainty is also
small.
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