The 2020 World Congress on **The 2020 Structures Congress (Structures20)** 25-28, August, 2020, GECE, Seoul, Korea

Structural displacement estimation by fusing accelerometer and vision camera

Jae-Mook Choi¹⁾, Zhanxiong Ma²⁾ and *Hoon Sohn³⁾

 ^{1), 2), 3)} Department of Civil and Environmental Engineering, KAIST, Daejeon ,SouthKorea
¹⁾ <u>cjmook@kaist.ac.kr</u>
²⁾ <u>mazhanxiong @kaist.ac.kr</u>
³⁾ hoonsohn@kaist.ac.kr

ABSTRACT

A displacement estimation method is developed for civil infrastructure by combining measurements from collocated accelerometer and vision camera. Using an adaptive multi-rate Kalman filter, the proposed method integrates high-frequency acceleration measured by an accelerometer and low-frequency displacement captured by a vision camera for static/dynamic displacement estimation. The proposed method offers following advantages: (1) displacement estimation without a rigid reference support and artificial targets, and (2) automatic estimation of the scale factor, which relates the displacement in pixel unit to a physical length unit. The performance of the proposed method was examined through lab-scale tests. The results show under 3 mm RMSE with respect to a reference displacement measurement (LDS).

- ¹⁾ Graduate Student
- ²⁾ Graduate Student
- 3) Professor